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ABSTRACT:
When designing passive sound-attenuation structures, one of the challenging problems that arise is optimally distrib-

uting acoustic porous materials within a design region so as to maximise sound absorption while minimising material

usage. To identify efficient optimisation strategies for this multi-objective problem, several gradient, non-gradient,

and hybrid topology optimisation strategies are compared. For gradient approaches, the solid-isotropic-material-

with-penalisation method and a gradient-based constructive heuristic are considered. For gradient-free approaches,

hill climbing with a weighted-sum scalarisation and a non-dominated sorting genetic algorithm-II are considered.

Optimisation trials are conducted on seven benchmark problems involving rectangular design domains in impedance

tubes subject to normal-incidence sound loads. The results indicate that while gradient methods can provide quick

convergence with high-quality solutions, often gradient-free strategies are able to find improvements in specific

regions of the Pareto front. Two hybrid approaches are proposed, combining a gradient method for initiation and a

non-gradient method for local improvements. An effective Pareto-slope-based weighted-sum hill climbing is intro-

duced for local improvement. Results reveal that for a given computational budget, the hybrid methods can consis-

tently outperform the parent gradient or non-gradient method.
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I. INTRODUCTION

Acoustic porous materials, such as foams or fibrous

materials, are widely used for passive noise control in auto-

motive, aerospace, and construction industries. While these

materials generally exhibit sound absorption across wide

frequency bands, their low-frequency absorption perfor-

mance is poor because the lengths of the absorber typically

needed are higher for longer wavelengths.1 To alleviate this

problem, one can modify the absorber shape or introduce

macro-scale air cavities2 to alter the dynamic properties,

creating favourable resonances that improve absorption

while also reducing the material usage. It is known that by

creating tortuous pathways with longer lengths than the

dimension of the material, it is possible to improve low-

frequency sound absorption. Exploring such shapes and sol-

utions requires allowing material variations along other

directions in addition to the primary direction of propaga-

tion. However, optimising the size, shape, and placement of

these air cavities or other solid scattering materials3 is essen-

tially a topology optimisation problem,4 which is challeng-

ing to solve.

Structural topology optimisation is the concept of

simultaneously optimising the topology (number of holes in

a structure) and shape (geometry and dimensions of these

holes) of mechanical structures so as to maximise the load-

bearing capacity with minimal material usage. It is a concept

first introduced by Bendsøe and Kikuchi5,6 in the 1990s and

has remarkable potential benefits in terms of reduced weight

and costs. In the last two decades, topology optimisation

techniques have been extended to automatic generation of

optimised acoustic shape designs in various applications,

such as horns,7 room sound treatments,8 anechoic chamber

foams,2,9 mufflers,10–13 sound barriers,14–17 and car internal

cavity,18 to name a few. Although topology optimisation is

inherently a multi-objective problem, i.e., simultaneously

maximising performance and minimising weight, it has been

common to treat it as a single-objective problem, i.e., maxi-

mising the performance while using a constraint on the

weight. Given that one of the main potential benefits is the

weight savings, it is of interest to treat it as a multi-objective

problem and obtain multiple trade-off designs simulta-

neously. Acoustic designers can then choose from the set of

Pareto optimal or trade-off solutions for manufacture.

While new and improved optimisation strategies are

being published for particular applications, there is a needa)Electronic mail: vivek.thaminniramamoorthy@nottingham.ac.uk
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for comparison studies which would facilitate the acoustic

designers to choose the most effective strategy for their use

case. Performing such comparisons is challenging as many

optimisation paradigms are available for topology optimisa-

tion problems that vary in solution representation (discrete

or continuous), gradient usage, memory (single-point or

population-based), move operators, acceptance strategies,

etc., and to ensure a fair comparison among different strate-

gies, each algorithm needs to be applied in the best or most

reasonable settings tuned to the problem domain. The goal

of this article is to identify effective multi-objective topol-

ogy optimisation algorithms for acoustic shape design. To

achieve this, a few selected approaches that are popular and

likely to be used by other researchers are compared. The

approaches chosen are as follows:

• Solid isotropic material with penalisation (SIMP);
• constructive heuristic with gradient (CHg);
• hill climbing with weighted-sum scalarisation (HC); and
• non-dominated sorting genetic algorithm-II (NSGA-II).

SIMP is a gradient-based approach for structural topol-

ogy optimisation.19–21 A key attribute of this approach is the

relaxation of the discrete problem of choosing between the

presence or absence of material at each finite element in

the design domain into a continuous problem by allowing

intermediate materials in each element and using a power-

law interpolation scheme to represent the material properties

for the intermediate materials. By allowing such fictitious

intermediate materials, it becomes possible to quickly com-

pute the sensitivity of structural performance to the interpo-

lation design variable, and the optimisation can be

performed faster. Despite certain drawbacks, such as need-

ing to re-derive the gradient equations for each application

or the algorithm getting stuck at local-optimal solutions, the

effectiveness and ease of implementation of SIMP22 have

made it the most popular approach for topology optimisa-

tion. At this point, it is worth noting some previous efforts

toward extending SIMP for multi-objective topology optimi-

sation. Suresh et al.23 studied the effects of restarts vs hot

starts for effective Pareto optimal compliance minimisation.

In restart SIMP, the algorithm is run from uniform-density

or random initial solutions with different volume fraction

constraints. Whereas in hot starts, the optimised solution

obtained from a previous run of SIMP is reused as an initial

solution in the next run. Such studies have not been con-

ducted for absorption maximisation. Hence, in this study,

two variants, SIMPsweep and SIMPrestart, are considered.

Mirzendehdel and Suresh24 proposed a multi-objective algo-

rithm for multi-material compliance minimisation, removing

the mass constraint and treating it as an objective. Fu25 pre-

sented an account on the advances in multi-objective topol-

ogy optimisation, including NSGA-II and weighted-sum

scalarisation. Although the multi-objective consideration is

prevalent, it constitutes a small fraction of the publications,

and comparison studies are rare.

Constructive heuristics are a class of optimisation algo-

rithms that start from empty solutions and build them step

by step using specific move operations to reach a complete

solution. An example of a constructive heuristic for topol-

ogy optimisation is the (bidirectional) evolutionary struc-

tural optimisation methods (ESO/BESO) introduced by Xie

and Steven.26,27 For compliance minimisation, ESO starts

from a completely solid-filled design domain and incremen-

tally removes material from low-stress regions. For acoustic

material topology optimisation, Ramamoorthy et al.9 intro-

duced two constructive heuristics: CH1, where the material

is added incrementally to an empty domain in places of

highest absorption increase; and CH2, where the material is

incrementally removed from a filled domain from places

where the decrease in absorption is minimal. These heuris-

tics performed among the top strategies in the study. One of

the drawbacks of CH1 and CH2 is that computing the

numerical absorption increments is expensive, and this can

be overcome by making use of the gradients. Adopting this,

a simple gradient-based constructive heuristic (CHg) is pro-

posed in the current study.

Hill climbing is a single-objective optimisation tech-

nique that starts with an initial solution and modifies it itera-

tively while accepting improving changes. A row-wise hill

climbing approach was found to perform among the best

strategies for acoustic material absorption maximisation.9 A

common strategy to solve multi-objective problems is to

combine the objectives into a scalar value in a process

known as scalarisation25,28 and apply a single-objective

algorithm. A simple way to scalarise is to use the weighted

sum of the objectives. By varying the weights, the relative

importance of each objective can be controlled. In this

study, hill climbing is used in conjunction with a weighted-

sum scalarisation technique (HC) as a candidate for multi-

objective topology optimisation.

NSGA-II, introduced by Deb et al.,29 is a widely used

multi-objective evolutionary algorithm. A notable attribute

of NSGA-II is the use of a fast non-dominated sorting proce-

dure in combination with a crowding-distance operator that

allows finding multiple points in the Pareto front simulta-

neously, as opposed to having to run multiple trials of a

single-objective algorithm in combination with a scalarisa-

tion technique. The effectiveness of NSGA-II and its var-

iants has made it the most popular multi-objective approach

for solving combinatorial optimisation problems.30

In addition to the above strategies, hybrid approaches 1

and 2 (HA1 and HA2) are proposed, involving a gradient

method for initialisation and a non-gradient method for local

improvement. The aim is to identify whether hybridising

approaches are beneficial. The results will provide perspec-

tives on each method and guide algorithm selection for

acoustic designers.

To test the above optimisation approaches, a finite

element-based poroelastic model is used to describe the

materials, a set of seven benchmark problems involving

rectangular impedance tube systems with varying dimen-

sions and materials are considered, and the optimisation of

the shapes are performed at wide frequency bands. A fixed

computational budget is allowed for all of the methods, and
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a hypervolume metric is used to assess the Pareto fronts

obtained from each algorithm.

The article is organised as follows. In Sec. II, the over-

all methodology, including problem description, optimisa-

tion formulation, modelling method, and the design of

experiments for optimisation methods, is provided. In Sec.

III, a comparison of gradient algorithms—SIMPsweep,

SIMPrestart, and CHg is provided. In Sec. IV, a comparison

of gradient-free algorithms, HC and NSGA-II, are provided.

Along with gradient-free algorithms, a random search proce-

dure is also compared. In Sec. V, two hybrid approaches,

HA1 and HA2, are described and compared with their parent

approaches. Finally, in Sec. VI, a summary of the findings

and some general guidelines to design algorithms are

provided.

II. METHODOLOGY

A. Problem formulation

Consider the problem of optimally filling a rectangular

design domain as shown in Fig. 1(a) with a given porous

material such that the sound absorption is maximised while

minimising the material used. The design domain can be

assumed to be backed by rigid walls subject to a normal-

incidence acoustic source. Sound absorption is the ratio of

energy absorbed to the total input sound energy. If no

porous material is placed in the design domain, there would

not be any absorption. Typically, as more porous material is

filled in the design domain, the absorption would increase,

but this is not always the case. There are instances when

removing material would improve absorption.9 Depending

on the distribution of porous material and air in the design

domain, sound absorption will be determined at different

frequencies of the acoustic source. Thus, this is a classic bi-

objective optimisation problem with trade-off solutions.

While there are many ways to formulate the topology

optimisation problem, one of the classical ways is to use a

fixed finite element discretisation of the system and optimise

the material assigned to each finite element. The shape and

topology can be represented by a vector, v, with zeros and

ones corresponding to the absence or presence of porous

material in each element, respectively, as shown in Fig. 1(b).

This is sometimes referred to as a bit-matrix representation.31

At this point, it is also worth acknowledging other formula-

tions such as moving morphable components,32 level-set

method,33,34 etc. The objective considered is to find the opti-

mal discrete assignments of either air or a given poroelastic

material to each finite element that simultaneously maxi-

mises the normal sound absorption and minimises the vol-

ume fraction of the porous material. Mathematically, this

formulation can be written as

max
v

�aðvÞ ¼ 1

nf

Xnf

i¼1

aðv; fiÞ; (1)

min
v

Vf ðvÞ ¼
1

ne

Xne

i¼1

vi;

v 2 f0; 1gne ;

�a 2 0; 1½ �;
Vf 2 0; 1½ �:

(2)

The first objective, �a 2 ½0; 1�, is the sound absorption aver-

aged across the target frequencies, ðf1; f2;…fnf
Þ, and the sec-

ond objective, Vf, is the porous volume fraction. Absorption,

�a, is averaged over a number of target frequencies, nf,

and porous material volume fraction, Vf, is averaged

over the number of elements, ne, in the design domain.

Normal-incidence sound absorption is used to reduce the

computational time for the tests. The results may be

extended to diffused field sound absorption, which is more

appropriate for practical purposes.

B. Computing the objectives

Computing the volume fraction Vf for a given shape, v,

is quick and straightforward from Eq. (2), whereas comput-

ing absorption �a is time-consuming, requiring solving a

finite element model of the acoustic system. To compute �a,

we model the acoustic system using a unified Biot-

Helmholtz model introduced by Lee et al.,2 which considers

all of the materials to be poroelastic. Such modelling avoids

treating interfaces explicitly and simplifies the numerical

procedure. In this method, for intermediate materials

between air and poroelastics, i.e., vi 2 ð0; 1Þ, the material

parameters are interpolated using a power-law, i.e., a mate-

rial parameter, say, wi is given by wair þ vp
i ðwpor � wairÞ,

FIG. 1. (Color online) (a) Schematic of an acoustic system with the design domain and (b) binary representation of a sample shape are shown. Zeros refer to

air and ones refer to the base porous material.
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where wpor and wair are the parameters of the porous mate-

rial and air, respectively. To avoid numerical issues when

solving the system, air is modelled as a poroelastic material

with a negligible solid-phase behaviour, i.e., vair ¼ 0:001.

Lee et al.2 have also verified the validity of such a procedure

with explicit interface modelling for various shapes. The

unified poroelastic system is then modelled using mixed for-

mulations by Atalla et al.,35 and the system equations are

written in matrix form as ½~Sðv; f Þ� u~
p~

� �
¼ f~Fg. Here, ½~Sðv; f Þ�

is the dynamic stiffness matrix, which depends on the material

assignments, v, and the frequency-dependent material parame-

ters. ~u and ~p correspond to the nodal solution to the solid-

phase displacements and fluid acoustic pressures, respectively.

By solving the linear system, pressure and velocity fields are

found and sound absorption can be computed at the target fre-

quencies using the two-microphone method.

The gradient of sound absorption with respect to the

topological design variables is computed by progressively

applying the chain rule in differentiation on the absorption

computation. For further details, one may refer to

Ramamoorthy et al.9 Once the linear system is solved to

compute �a, the gradient, @�a=@v, can be computed in approx-

imately two additional instances of solving the system of

linear equations, making gradient algorithm fitness evalua-

tions thrice as expensive as computing absorption.

Time to compute �a and
@�a
@v
� 3� time to compute �a: (3)

Such a quick computation of the gradient is achieved using

a fictitious load vector pre-multiplication, as explained in

Lee et al.12 Thus, computing absorption and the gradient is

three times as expensive as computing just absorption.

Therefore, the gradient methods will be given one-third of

the fitness evaluation budget. Fitness evaluation corresponds

to the number of times �a and Vf are evaluated.

C. Benchmark problem instances

To compare the optimisation approaches, seven bench-

mark problem instances, which were previously introduced

in Ramamoorthy et al.,9 are adopted. The only difference

here is that a modification has been made in the mesh size in

problem instance 3 to improve the model accuracy. For

completeness, the details of the problem instances are pro-

vided in Table I. The parameters in Table I, nelx and nely,

are the number of finite elements horizontally and vertically

across the design domain, D and d are the lengths and

widths of the design domain, respectively, fmin and fmax are

the lower and upper limits of the frequency, respectively,

and fstep is the frequency increment. All of the problem

instances have a rectangular design domain with varying

dimensions, discretisation, the porous material filled, and

frequency range of interest. Table II provides the poroelastic

material properties for the materials used in the problem

instances. While problem instance 1 uses the same material

as was employed in Lee et al.2 with a high tortuosity, the

third problem instance uses a fictitious material with high

airflow resistivity, and all of the other problem instances use

melamine. A Johnson-Champoux-Allard-Lafarge (JCAL)

model (Refs. 36–38) was used to represent the acoustic

material behaviour in these materials.

D. Experimental design for optimisation trials

Table III provides a quick summary of the optimisation

approaches used in this study along with a pseudocode of

each approach. More detailed descriptions of each algorithm

are provided in Secs. III–V. Reasonable effort has been

made to use each algorithm in its recommended or best set-

tings from parameter tuning and in the standard way unless

otherwise stated.

All of the strategies were given the same arbitrarily

chosen computational budget of 4096 equivalent gradient-

free fitness evaluations. Gradient algorithms were assigned

4096=3 � 1365 fitness evaluations, and the non-gradient

methods are allowed 4096 fitness evaluations. For the hybrid

algorithms, 25% of the computational effort was allotted for

gradient-based search and 75% was allotted for non-

gradient search, i.e., 25%� 4096=3 gradient-included and

75%� 4096 gradient-free fitness evaluations. Each non-

gradient computation takes a fraction of a second to about

4 s, depending on the problem instance on a reference

TABLE I. Benchmark problems (see Sec. II C).

Problem Mesh size Length Height fmin fstep fmax

Material

identification

Instance nelx � nely D (m) d (m) (Hz) (Hz) (Hz) (see Table II)

1 10� 10 0.135 0.054 100 100 1500 (1)

2 15� 10 0.045 0.1 100 100 1500 (2)

3 50� 20 0.1 0.1 50 50 500 (3)

4 10� 10 0.02 0.1 100 100 1500 (2)

5 10� 10 0.02 0.1 2000 1000 5000 (2)

6 50� 20 0.135 0.054 100 100 1500 (2)

7 10� 5 0.135 0.054 500 500 500 (2)

TABLE II. Materials used in the benchmark problems and their properties

(see Table I).

Material parameters Material-1 Material-2 Material-3

Material Lee et al. (Ref. 2) Melamine High-resistivity

foam

Acoustic model Johnson, Champoux,

Allard, Lafarge

(Refs. 36–38)

JCAL JCAL

/ 0.9 0.99 0.8

K0 (lm) 449 196 100

K (lm) 225 98 10

r (N s m�4) 25 000 10 000 300 000

a1 7.8 1.01 3

k00 4.75e-09 4.75e-09 4.75e-09

q (kg m�3) 31.08 8 80

E (Pa) 800 000 160 000 30 000

� 0.4 0.44 0.44

g 0.265 0.1 0.01
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computer. For the largest problem instance, this translates

to a computational budget of about 4.5 h for 4096 fitness

evaluations per trial and about 2.8 days for 15 trials of a

method.

It should be noted that the resulting SIMP solutions had

intermediate materials in some trials on some problem

instances. In such scenarios, the non-dominated solutions

were discretised by a round-off filter and the fitnesses were

recomputed. This is performed so that all of the solutions

compared in this study are from the discrete space to facili-

tate a fair comparison.

To quantify and compare the non-dominated solution

set produced by each algorithm, a hypervolume metric is

used. The hypervolume value corresponding to a given set

of trade-off solutions is the scalar value equal to the union

of volumes in the objective space dominated by each solu-

tion over the objective values of a given reference solution.

An illustration is shown in Fig. 2. For the bi-objective prob-

lem under study, the hypervolume would simply be the area

of the objective space that is dominated by the Pareto set

obtained from the algorithms from a reference point. The

reference point chosen is ð�a;Vf Þ ¼ ð0; 1Þ. A larger hypervo-

lume of the Pareto solutions indicates a better performance

of the multi-objective method.

III. GRADIENT APPROACHES

A. SIMP

SIMP is a single-objective topology optimisation

method, which uses volume fraction constraint, V̂ f , as an

input parameter. To use SIMP in the multi-objective

context, two implementations, namely, SIMPrestart and

SIMPsweep, are considered in this study. In SIMPrestart,

multiple trials of SIMP are run with each trial using a differ-

ent volume fraction constraint, V̂ f . For each of these trials,

SIMP was initialised from a random solution normalised to

TABLE III. Optimisation approaches and their settings.

Algorithm Description and pseudocode

Deterministic

or stochastic Trials

Fitness evaluation

budget per trial

Gradient-based approaches

SIMPrestart SIMP restarted with different volume fraction constraints V̂ f : A gradient-

based strategy with optimality criteria move-update, following Ref. 39.

Initialised with random solutions; restarted with a new V̂ f until budget is

used up.

Stochastic: multiple

restarts within trial

1 (many

restarts)

1365 (with gradient)

SIMPsweep SIMP with adaptive volume fraction constraint: Initialised with an empty

design domain; volume fraction constraint, V̂ f , updated after each fitness

evaluation reached one as budget approaches.

Deterministic 1 1365 (with gradient)

CHg Gradient-based constructive heuristic: Start from an empty solution; add

porous material in steps of “m” elements, where the gradient is highest, until

all elements are porous

Deterministic 1 min(ne/m,1365)

(with gradient)

Non-gradient approaches

HC Hill climbing: Use a weighted-sum scalarisation technique to combine the

two objectives into a single fitness value. Apply first improvement hill

climbing starting from a random discrete solution. Move order is like in a

raster-scan.

Stochastic, as initial

solution is random

15 4096 (non-gradient)

NSGA-II NSGA-II (Ref. 29): Use a bit representation, tournament selection based

on crowding distance and rank, uniform crossover, bit-wise mutation

probability of 1=N.

Stochastic 15 4096 (non-gradient)

RAND Random search algorithm: Pick a desired volume fraction uniformly

2 ½0; 1�; use this as the probability of porous material at each element and

synthesise a solution. Repeat budget number of times.

Stochastic 15 4096 (non-gradient)

Hybrid approaches

HA1 Hybrid approach 1: Run CHg using 25% of the budget, and run hill climbing

for 75% of the budget starting from a selected solution with scalarisation

weight such that the combined objective isoline at the solution point in

objective space is tangential to the Pareto front.

Deterministic but depends

on the point picked for

hill climbing

15 4096 (equivalent

non-gradient)

HA2 Hybrid approach 2: Run CHg using 25% of the budget, and run NSGA-II for

75% of the budget starting from an initial population from equispaced points

in the CHg Pareto front.

Stochastic 15 4096 (equivalent

non-gradient)

FIG. 2. (Color online) An illustration of the hypervolume metric.
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have an overall initial volume fraction close to the chosen

V̂ f . Once convergence is achieved, SIMP is restarted with a

new V̂ f and a newly generated initial solution. SIMPsweep

starts from an empty or air-filled solution with an initial vol-

ume fraction limit of V̂ f ¼ 0 and applies SIMP move updates

while updating V̂ f in every iteration, reaching V̂ f ¼ 1 as the

fitness evaluation budget is reached. The solutions from

SIMP algorithms do not always result in discrete zero or one

shapes, and the shapes are rounded, i.e., values less than 0.5

are set to zero and values more than 0.5 are set to one, and

the absorptions are recomputed. This involved additional fit-

ness evaluations beyond the budget. Nevertheless, the result-

ing changes in absorption due to rounding are expected to be

insignificant.

B. CHg

CHg starts from an empty or air-filled design domain

and fills porous material incrementally in finite elements,

where the gradient of sound absorption @�a=@vi is highest.

At each step, m elements are chosen to be filled with porous

material after each gradient evaluation, and the total number

of fitness evaluations necessary would be ne=m, where ne is

the total number of elements. m is chosen such that ne=m
does not exceed the budget. Note that CHg searches solu-

tions in the discrete space because an element is either filled

or not filled, unlike that in the SIMP algorithms.

Note that it is possible to speed up gradient algorithms

if required. For example, if the allocated fitness evaluation

budget is reduced by a factor of ten, for SIMPsweep, the

volume fraction constraint, V̂ f , can be adapted ten times

quickly; in CHg, the number of elements filled, m, can be

increased ten times. For SIMPrestart, speed-up can be

achieved by tuning the move limit parameter, m, but should

be performed with care to avoid numerical oscillations.

IV. NON-GRADIENT APPROACHES

A. Hill climbing

Hill climbing is a single-objective optimisation tech-

nique wherein an initial solution is picked and iteratively

modified, and the modified solution is accepted as the cur-

rent solution if it is improving. To adapt this method for

multi-objective optimisation, the two objectives �a and Vf are

combined into a scalar value using

min
v

C ¼ �w�a þ ð1� wÞVf : (4)

The weight, w, corresponds to the importance of maxi-

mising absorption as opposed to minimising volume fraction

and can take values between zero and one. A weight of one

implies maximising only absorption irrespective of volume

fraction and, likewise, a weight of zero corresponds to only

minimising volume fraction. An illustration of the effect of

choosing w on the scalarised objective is shown in Fig. 3.

Note that w governs the slope of the isolines of the scalar-

ised objective. This will be relevant in hybrid algorithm 1.

For each trial run of HC, a fixed weight is chosen. Then, hill

climbing on the combined objective is performed until the

fitness evaluation budget is used up. Fifteen such trials are

run with different weights.

B. NSGA-II

NSGA-II is a popular multi-objective optimisation strat-

egy introduced by Deb et al.29 It has been effectively used

in solving multi-criteria decision-making problems across a

plethora of fields. In this implementation of NSGA-II, a

single-point crossover with an individual crossover proba-

bility of 0.9 is applied with a bit-wise mutation rate of

ð1=neÞ, where ne is the chromosome length, and a population

size of 32. These parameters were chosen based on

parameter-tuning studies on genetic algorithms.9

C. Random search algorithm (RAND)

For benchmarking the performance of HC and NSGA-

II, a RAND is also applied on all of the seven problem

instances. For this, random solutions spread across volume

fraction are obtained by choosing a random number for

desired volume fraction and using this value as probability

to fill porous material in each element.

V. HYBRID APPROACHES

From the studies on gradient and non-gradient algo-

rithms, it was observed that gradient methods can quickly

approximate the Pareto front, whereas non-gradient methods

can provide improvements in specific regions of the Pareto

front. To obtain the benefits of both, two hybrid approaches,

combining a gradient-based algorithm for initiation and a

non-gradient algorithm for improvement, are presented and

compared. The first hybrid approach is a combination of

CHg and HC, denoted as HA1, and the second hybrid

approach is a combination of CHg and NSGA-II, denoted as

HA2. CHg was picked as the initiator mainly because it

FIG. 3. (Color online) The effect of weights in weighted-sum scalarisation on the isolines of combined objective value. Note that w governs the slope of the

isolines.
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guarantees discrete solutions and allows the possibility to

speed up.

A. Hybrid approach 1: CHg 1 HC

HA1 combines the use of CHg for 25% of the budget

and HC for the remaining 75% of the budget. These numbers

are arbitrarily chosen with some basis on experience. Because

CHg is gradient-based, and gradient-included evaluations are

thrice as expensive as non-gradient fitness evaluations [Eq.

(3)], the rationing is such that CHg uses 25%� ð4096=3Þ fit-

ness evaluations and HC uses 75%� ð4096=1Þ fitness

evaluations.

Figure 4 illustrates the procedure involved in HA1. First,

CHg is run to obtain a trade-off solution set. Then, 15 solu-

tions are selected from the CHg trade-off set equispaced in

volume fraction to use as initial solutions for each of the 15

HC trials. For each HC trial, a different scalarisation weight,

w, is used such that the isolines of the combined objective,

C, have a slope tangential to CHg Pareto front at the initial

solution. The slope of the Pareto front at the initial solution

is obtained using a simple central difference of adjacent

points. This “Pareto-slope-based scalarisation” effectively

guides HC to find improvements to the Pareto front. HC is

run until the remaining budget is used up. Figure 4 shows the

progress of solutions in the objective space in an arbitrarily

chosen trial of HA1. The CHg Pareto front is depicted in

magenta dashed lines. A solution marked in blue circle is

picked and based on the Pareto-slope at this point marked in

solid black line, and hill climbing is applied with a scalarisa-

tion weight, w, chosen such that the scalarised isolines (see

Fig. 3) match the Pareto tangent. It may be observed that

new improving solutions better in frequency-averaged

absorption and volume fraction are found by the HC

improver. Also, only a specific region is explored. The com-

bined Pareto front from all of the 15 trials of HA1 is marked

in red crosses.

B. Hybrid approach 2: CHg 1 NSGA-II

HA2 combines CHg and NSGA-II in a similar fashion,

i.e., CHg uses 25% of the budget, and NSGA-II uses the

remaining 75% of the budget. The rationing of fitness evalu-

ations is similar to that in HA1. When there were more solu-

tions in CHg Pareto set, only 32 solutions equispaced in

volume fraction were considered as the initial population for

NSGA-II, and when there were less solutions, they were

duplicated using the selection process in the first generation.

Then, NSGA-II is run for the remainder of the budget.

Figure 5 shows the solutions searched in an example

trial out of the 15 trials that were run for problem instance 1.

After obtaining the CHg Pareto front displayed in magenta,

32 equispaced points were picked as the initial population

for NSGA-II, resulting in the blue points. The overall Pareto

front shown in red crosses includes some better solutions

(beyond Vf ¼ 0:2), which dominate the CHg Pareto front in

terms of �a and Vf.

C. Overall comparison

1. Trial-averaged performance

Table IV shows an overall comparison of the resulting

hypervolumes covered by all of the algorithms for all of the

problem instances. These hypervolumes were obtained by

allowing 1365 fitness evaluations for gradient algorithms

and 4096 gradient-free fitness evaluations for non-gradient

algorithms. These fitness evaluations correspond to giving

the same computational time for all of the algorithms.

FIG. 4. (Color online) The HA1 illustration of a trial for problem instance

1, which consists of applying CHg for 25% of the budget, picking an initial

solution on the CHg Pareto set, setting scalarisation weight such that the

isolines of the combined objective are tangential to the Pareto front at the

selected CHg point, and applying hill climbing for the rest of the fitness

evaluation budget. The final Pareto set after combining 15 trials, with each

starting from equispaced points on the CHg Pareto set, are shown using “x”

markers.

FIG. 5. (Color online) The HA2, where CHg is run for 25% of computa-

tional budget, then using the Pareto set as the initial population, and NSGA-

II is run for the remaining budget. Solutions traversed by NSGA-II in 1 of

the 15 trials are shown with blue dots. The combined Pareto front from 15

trials is shown with red crosses.
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Because 15 trials were run for non-gradient and hybrid algo-

rithms, the median-trial hypervolume is shown. The highest

hypervolumes rounded to two decimal places are shown in

bold font, indicating that the algorithm performs best on that

problem instance.

Among the gradient methods, it is worth noting that

SIMPsweep performs the best in more problem instances

than SIMPrestart, whereas the SIMPsweep and CHg are simi-

lar, performing best in three problem instances each. Notably,

SIMPsweep and CHg are also scalable for lower budgets.

Between HC and NSGA-II, NSGA-II consistently spans

a higher hypervolume across all of the problem instances.

This is because based on the choice of scalarisation weight,

in a given trial, HC only explores a specific region in the

Pareto front. NSGA-II spans the objective space effectively

because of the crowding-distance-based selection mecha-

nism. NSGA-II also outperforms RAND in all of the prob-

lem instances, but, interestingly, HC on a per-trial basis,

does not outperform even RAND. This is because HC in a

single trial is essentially a single-objective algorithm that

does not incentivise spanning the hypervolume. Neither HC

nor NSGA-II resulted in best hypervolumes in any of the

problem instances, highlighting the deficiency of non-

gradient methods in multi-objective topology optimisation.

Overall, the hybrid algorithms result in a better hyper-

volume in more problem instances than the parent gradient

or non-gradient methods. Note that HA2 performs better

than stand-alone NSGA-II for the same budget. While it is

evident that gradient-based initialisation boosts the perfor-

mance of NSGA-II, it is interesting to note that HA2 can

perform better that SIMPrestart or SIMPsweep, which are

normally used in practise. Thus, if one has a fixed computa-

tional budget to cover the most hypervolume, it may be

worth exploring the use of CHg followed by NSGA-II.

2. Combined performance across 15 trials

It is also of interest to identify effective strategies that

find solutions with best attainable quality with longer com-

putational time budgets, such as for manufacturing best

acoustic designs. Table V shows the resulting hypervolumes

covered by a combination of 15 trials, which is equivalent

to 15 � 4096 gradient-free function evaluations. For this

comparison, gradient methods are not included as they do

not use the same budget.

In this comparison, HC shows a significant improvement

as it is able to combine the good solutions from various

regions of the Pareto front. For the same reason, HA1, which

is a combination of CHg and HC, also performs exceptionally

well and produces the best hypervolumes in all of the prob-

lem instances. This shows that the proposed Pareto-slope-

based weighted-sum scalarisation technique with a simple

greedy hill climbing algorithm can be used as an effective

local improvement strategy. A take-away is that before

manufacturing an optimal shape using any multi-objective

topology optimisation approach, it is worth ensuring that

there exists no other dominating solution that HC can find.

Between NSGA-II and its hybrid counterpart, HA2, the

latter seems to cover more hypervolumes across all of the

problem instances. This is another example of a hybrid

approach performing better than its parent approach. HA2

also performs among the best in three problem instances and

comes close to the performance of HA1. This shows that

there is benefit to using hybrid strategies involving gradient

initialisers with non-gradient improvers.

3. Manufacturability considerations

While the hybrid algorithms are able to span better

hypervolumes, a natural question that arises is whether these

acoustic material shapes are feasible to be manufactured.

TABLE IV. Median hypervolumes obtained while running one trial with a budget equivalent to 4096 gradient-free fitness evaluations. Best values are

highlighted in bold for each problem instance. HA2 seems to perform best when considering the trial-averaged performance for 4096 fitness evaluations.

Gradient-based Gradient-free Hybrid

Fitness evaluations 1365 1365 min(ne=m,1365) 4096 4096 4096 4096 4096

Instance/algorithm SIMPrestart SIMPsweep CHg HC NSGA-II RAND HA1 HA2

1 0.71 0.68 0.67 0.56 0.68 0.59 0.70 0.72

2 0.40 0.40 0.41 0.27 0.34 0.32 0.41 0.41

3 0.73 0.61 0.74 0.59 0.63 0.61 0.73 0.72

4 0.12 0.12 0.11 0.09 0.11 0.11 0.11 0.12

5 0.52 0.53 0.53 0.38 0.48 0.46 0.53 0.53

6 0.72 0.76 0.75 0.54 0.66 0.62 0.76 0.76

7 0.87 0.86 0.87 0.71 0.85 0.77 0.87 0.88

TABLE V. Here, hypervolumes combined over 15 trials are compared.

These hypervolumes are also contrasted with those of single trials of gradient

algorithms. Best values are highlighted in bold for each problem instance.

Gradient-free Hybrid

Instance HC NSGA-II RAND HA1 HA2

Budget 15 � 4096 15 � 4096 15 � 4096 15 � 4096 15 � 4096

1 0.74 0.73 0.62 0.74 0.73

2 0.40 0.36 0.33 0.41 0.40

3 0.78 0.69 0.62 0.81 0.73

4 0.11 0.12 0.11 0.12 0.12

5 0.52 0.50 0.47 0.53 0.53

6 0.75 0.63 0.63 0.77 0.76

7 0.84 0.87 0.80 0.88 0.88
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Figure 6 shows the Pareto solutions in the absorption vs vol-

ume fraction space with a few optimal shapes for each algo-

rithm for problem instance 6.

The optimal acoustic shapes from SIMPrestart exhibit a

wide range of features, from circular cavities to flat-layered

structures to complex and intricate patterns. These features

seem to be dependent on the random initial solution picked.

For this problem instance, the general trend is that as more

porous materials are added in the design domain, the

frequency-averaged absorption also increases. For SIMPsweep,

the optimal shapes closely resemble a single flat layer of

porous material at low volume fraction for this melamine

problem instance. However, when considering other problem

instances, patterns other than flat-layered shapes were also

produced. It should be noted that these shapes are rounded to

remove any intermediate material elements that were pre-

sent. For CHg, the shapes have two flat layers as opposed to

one, as found in SIMPsweep.

In general, the gradient algorithms produced meaning-

ful shapes, whereas non-gradient algorithms produced

FIG. 6. (Color online) Pareto optimal

shapes produced by all of the algo-

rithms for the same computational

budget for problem instance 6.
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indeterminate shapes. The shapes produced by HC resem-

bled alternating layers of porous material and air, and

NSGA-II did not converge to meaningful shapes on this

problem instance for the budget considered. In cases where

gradient formulations are not available, appropriate filtering

techniques are suggested to produce meaningful shape

patterns.

Among the hybrid algorithms, the shapes from HA1

and HA2 resembled two flat layers of porous material sepa-

rated by an air layer likely due to the initialisation with

CHg. Some differences can be observed at higher volume

fractions, where HA1 produced intricate shapes while HA2

retained the two distinct layered shapes.

Figure 7 shows a few trade-off shapes and their absorp-

tion curves for HA2 and compares them with SIMPrestart

for problem instance 6. Near a volume fraction of 0.25,

while SIMPrestart finds a shape with a blob of porous mate-

rial with a cavity, HA2 is able to find a slightly better

absorbing solution with two thin flat layers. SIMPrestart is

unable to converge to this shape because it reaches a local

optimum. While observing the differences in absorption

curves, it is seen that the peak absorption occurs at slightly

different frequencies. At a volume fraction of 0.5, the

absorption curves are similar even though the shapes are

considerably different. At higher volume fractions,

SIMPrestart finds a solution with a thick porous layer with

an enclosed air cavity, whereas the HA2 solution retains the

double-flat-layered shape. While the SIMPrestart shape has

a slightly lower absorption around 1000 Hz with a lower fre-

quency cutoff, the double-flat-layered-shape exhibits consis-

tently high absorption after a slightly higher cutoff

frequency. These two shapes do not differ significantly in

frequency-averaged sound absorption.

4. Discussions and perspectives

In general, certain shape features seem to be preferred

in the acoustic shape designs across problem instances such

as the presence of an air backing in front of the rigid wall.

For melamine problem instances, flat-layered shapes were

optimal on many occasions, but it was also common to

observe inverted wedge-shaped designs resembling a

reversed anechoic chamber wedge. Intricate shapes with

two-dimensional features occurred occasionally and were

predominantly the case for poroelastics with high airflow

resistivity. With regard to the algorithm choice, if acoustic

designers are interested in quickly obtaining shape designs

for conceptual design, gradient methods, such as

SIMPsweep or CHg, are recommended. If the goal is to fab-

ricate and install optimised shapes in practical applications,

hybrid algorithms are recommended to ensure that subopti-

mal designs are not chosen.

While in many instances, the variation of materials in

optimal shapes is in the primary direction of wave propaga-

tion, in some cases, the optimal shapes have two-

dimensional material distribution, justifying the need for

topology optimisation. A three-dimensional (3D) topology

optimisation setup could enable more intricate propagation

paths and, hence, potentially better absorbing solutions.

In the current study, efficient optimisation strategies

have been explored by comparing methods likely to be used

by other researchers. An extension to this study may be to

investigate other topology optimisation paradigms such as

moving morphable components and level-set. Methods like

ESO/BESO use a term such as stress to modify the shape for

compliance minimisation. It would be of interest to explore

the existence of a field variable analogous to stress in acous-

tic applications. Such studies could pave the way for

informed heuristics and use domain-specific knowledge that

could prove more efficient. Additionally, the current compu-

tational bottleneck is solving the finite element system. An

area of interest is to explore incremental evaluation strate-

gies that allow quick solution computation for slightly modi-

fied shapes.

VI. CONCLUSION

In this article, several multi-objective topology optimi-

sation strategies were compared with the goal of identifying

effective approaches for obtaining lightweight and high-

absorbing acoustic shape designs within a given amount of

computational effort. Several commonly used optimisation

strategies, including SIMP, NSGA-II, weighted-sum hill

climbing, and constructive heuristics, were tested across

seven benchmark problems involving a simple impedance

tube system. The results showed that gradient algorithms

could quickly converge to good-quality solutions but occa-

sionally get stuck at local-optimal shapes. This is indicated

by the fact that non-gradient approaches have been able to

find better solutions in terms of absorption and volume frac-

tion objectives. Hence, we tested hybrid algorithms that use

gradient algorithms as initialisers and non-gradient algo-

rithms for local improvement. The results reveal that for the

same computational budget, hybrid algorithms can consis-

tently find better acoustic shapes than their parent gradient

or non-gradient methods. We also introduced a novel

FIG. 7. (Color online) Comparison of Pareto shapes and their absorption vs

frequency curves from SIMPrestart and HA2 algorithms for problem

instance 6. The absorption curves are plotted beside the shapes.
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Pareto-slope-based hill climbing that could be used for

effective local improvement. Such techniques may benefit

acoustic engineers by revealing the existence of lightweight

and better absorbing solutions, thereby avoiding choosing

suboptimal shapes for additive manufacturing.
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