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When designing passive sound-attenuation structures, one of the challenging
problems that arise is optimally distributing acoustic porous materials within a
design region so as to maximise sound absorption while minimising material us-
age. To identify efficient optimisation strategies for this multi-objective problem,
we compare several gradient, non-gradient and hybrid strategies. For gradient
approaches, the solid-isotropic-material-with-penalisation method (SIMP) and a
novel gradient-based constructive heuristic (CHg) are considered. For gradient-
free approaches, hill climbing with a weighted-sum scalarisation (HC) and a
non-dominated sorting genetic algorithm II (NSGA-II) are considered. Optimi-
sation trials are conducted on seven benchmark problems involving rectangular
design domains in impedance tubes subject to normal-incidence sound loads.
The results indicate that while gradient methods can provide quick convergence
with high-quality solutions, often gradient-free strategies are able to find im-
provements in specific regions of the Pareto front. Two novel hybrid approaches
(HA1 and HA2) are proposed combining a gradient method (CHg) for initiation
and a non-gradient method (respectively HC and NSGA-II) for local improve-
ments. A novel and effective Pareto-slope-based weighted-sum hill climbing is
introduced for local improvement. Results reveal that for a given computational
budget, the hybrid methods can consistently outperform the parent gradient or
non-gradient methods.
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I. INTRODUCTION4

Acoustic porous materials such as foams or fi-5

brous materials are widely used for passive noise6

control in automotive, aerospace and construc-7

tion industries. While these materials generally8

exhibit sound absorption across wide frequency9

bands, their low-frequency absorption performance10

is poor since the lengths of the absorber typically11

needed are higher for longer wavelengths1. To al-12

leviate this problem, one can modify the absorber13

shape or introduce macro-scale air cavities2 to alter14
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the dynamic properties creating favourable reso-15

nances that improve absorption while also reducing16

the material usage. However, optimising the size,17

shape and placement of these air cavities or other18

solid scattering materials3 is essentially a topol-19

ogy optimisation problem4, which is challenging to20

solve.21

Topology optimisation is the concept of simul-22

taneously optimising both the topology (number23

of holes in a structure) and the shape (geome-24

try and dimensions of these holes) of mechanical25

structures so as to maximise the load-bearing ca-26

pacity with minimal material usage. It is a con-27

cept first introduced by Bendsøe and Kikuchi5,628

in the 1990s and has remarkable potential bene-29

fits in terms of reduced weight and costs. In the30

last two decades, topology optimisation techniques31

have been extended to automatic generation of op-32

timised acoustic shape designs in various applica-33

tions, such as horns7, room sound treatments8,34

anechoic chamber foams2,9, mufflers10–13, sound35

barriers14–17, and car internal cavities18 to name36

a few. Although topology optimisation is in-37

herently a multi-objective problem i.e., simulta-38

neously maximising performance and minimising39

weight, it has been common to treat it as a40
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single-objective problem i.e., maximising the per-41

formance while using a constraint on the weight.42

Given that one of the main benefits is the poten-43

tial weight savings, it is of interest to treat it as a44

multi-objective problem and obtain multiple trade-45

off designs simultaneously. The acoustic designers46

can then choose from the set of Pareto optimal or47

trade-off solutions for manufacture.48

While new and improved optimisation strate-49

gies are being published for particular applications,50

there is a need for comparison studies which would51

facilitate engineers to choose effective strategies52

for their use case. Performing such comparisons53

is challenging since many optimisation paradigms54

exist to solve topology optimisation problems that55

vary in solution representation (discrete or con-56

tinuous), gradient usage, memory (single point57

or population-based), move operators, acceptance58

strategies etc. To ensure a fair comparison, each59

algorithm needs to be applied in the best or most60

reasonable settings tuned to the problem. In this61

article, a few selected approaches that are popular62

and likely to be used by other researchers are tested63

and compared. The list of approaches chosen are:64

• Solid isotropic material with penalisation65

(SIMP)66

• Constructive heuristic with gradient (CHg)67

• Hill climbing with weighted-sum scalarisa-68

tion (HC)69

• Non-dominated sorting genetic algorithm-II70

(NSGA-II)71

SIMP is the most commonly-used approach for72

structural topology optimisation19–21. A key at-73

tribute of this approach is the relaxation of the74

discrete problem into a continuous problem by al-75

lowing intermediate materials and using a power-76

law interpolation scheme. Using continuous relax-77

ation allows the possibility of computing the gra-78

dients quickly using adjoint-like methods, which79

can make the optimisation quite effective, notwith-80

standing certain drawbacks such as getting stuck81

at local optima or the presence of intermediate ma-82

terials in the final solution. Its effectiveness and83

ease of implementation22, have made it the most84

popular approach for topology optimisation. At85

this point, it is worth noting some previous efforts86

toward extending SIMP for multi-objective topol-87

ogy optimisation. Suresh et al.23 extended the 99-88

line MATLAB code to a 199-line code for Pareto-89

optimal compliance minimisation, and also studied90

the effect of restarts vs hot starts. Hence, in this91

article, two variants SIMPsweep and SIMPrestart92

are considered. Mirzendehdel et al.24 proposed a93

multi-objective algorithm for multi-material com-94

pliance minimisation removing the mass constraint95

and treating it as an objective. While the multi-96

objective consideration is prevalent, it constitutes97

a small fraction of the publications, and compari-98

son studies are rare.99

Constructive heuristics are a class of optimi-100

sation algorithms that start from empty solutions101

and build them step by step using specific move op-102

erations to reach a complete solution. An example103

of a constructive heuristic for topology optimisa-104

tion is the (bi-directional) evolutionary structural105

optimisation methods (ESO/BESO) introduced by106

Xie and Steven25,26. For compliance minimisation,107

ESO starts from a completely solid-filled design108

domain and incrementally removes material from109

low-stress regions. For acoustic material topology110

optimisation, Ramamoorthy et al.9 introduced two111

constructive heuristics: CH1, where the material is112

added incrementally to an empty domain in places113

of highest absorption increase; and CH2, where the114

material is incrementally removed from a filled do-115

main from places where the decrease in absorption116

is minimal. These heuristics performed among the117

top strategies in the study. One of the drawbacks118

of CH1 and CH2 is that computing the numer-119

ical absorption increments is expensive, and this120

can be overcome by making use of the gradients.121

Adopting this, a simple gradient-based construc-122

tive heuristic (CHg) is proposed in the current123

study.124

Hill climbing is a single objective optimisa-125

tion technique that starts with an initial solution126

and modifies it iteratively while accepting improv-127

ing changes. A row-wise hill climbing approach128

was found to perform among the best strategies129

for acoustic material absorption maximisation9. A130

common strategy to solve multi-objective problems131

is to combine the objectives into a scalar value132

in a process known as scalarisation27, and to ap-133

ply a single objective algorithm. A simple way134

to scalarise is to use the weighted sum of the ob-135

jectives. By varying the weights, the relative im-136

portance of each objective can be controlled. In137

this study, hill climbing is used in conjunction with138

a weighted-sum scalarisation technique (HC) as a139

candidate for multi-objective topology optimisa-140

tion.141

The non-dominated sorting genetic algorithm-142

II (NSGA-II) introduced by Deb et al.28 is a well-143

known multi-objective evolutionary algorithm. A144

notable attribute of NSGA-II is the use of a fast145

non-dominated sorting procedure in combination146

with a crowding-distance operator that allows find-147

ing multiple points in the Pareto front simultane-148

ously, as opposed to having to run multiple tri-149

als of a single objective algorithm in combination150

with a scalarisation technique. The effectiveness151

of NSGA-II and its variants has made it the most152

popular multi-objective approach for solving com-153

binatorial optimisation problems29.154

In addition to the above strategies, two hybrid155

approaches (HA1 and HA2) are proposed involv-156

ing a gradient method for initialisation and a non-157

gradient method for local improvement. The aim158
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Figure 1. (color online) (a) Schematic of an acoustic

system with the design domain. (b) Binary represen-

tation of a sample shape. 0 refers to air and 1 refers

to porous material.

is to find whether hybrid approaches are benefi-159

cial. The results will provide perspectives on each160

method, and guide algorithm selection.161

The article is organised as follows. In sec-162

tion II, the overall methodology including prob-163

lem description, optimisation formulation, mod-164

elling method, and details of the experimental de-165

sign is provided. In section III, a comparison166

of gradient algorithms —SIMPsweep, SIMPrestart167

and CHg is provided. In section IV, a compari-168

son of gradient-free algorithms HC, and NSGA-II169

are provided. Along with gradient-free algorithms,170

a random search procedure is also compared. In171

section V, two hybrid approaches HA1 and HA2172

are described and compared with their parent ap-173

proaches. Finally, in section VI, a summary of the174

findings and some general guidelines to design al-175

gorithms are provided.176

II. METHODOLOGY177

A. Problem formulation178

Consider the problem of optimally filling a179

rectangular design domain with a given porous ma-180

terial such that the sound absorption is maximised181

while using minimal material. The design domain182

can be assumed to be backed by rigid walls with183

normal-incidence acoustic source placed as shown184

in Figure 1(a). Sound absorption is the ratio of en-185

ergy absorbed to the total input sound energy. If186

no porous material is placed in the design domain,187

there would not be any absorption. Typically as188

more porous material is filled in the design domain,189

the absorption would increase, but this is not al-190

ways the case. There are instances when removing191

material would improve absorption9. Depending192

on the distribution of porous material and air in193

the design domain, sound absorption will be de-194

termined at different frequencies of the acoustic195

source. Thus, this is a classic bi-objective optimi-196

sation problem with trade-off solutions.197

While there are many ways to formulate the198

topology optimisation problem, one of the classi-199

cal ways is to use a fixed discretisation of the sys-200

tem and optimising the material assigned to each201

finite element. The shape and topology can be202

represented by a vector χ with zeros and ones cor-203

responding to the absence or presence of porous204

material in each element respectively, as shown205

in Figure 1(b). This is sometimes referred to206

as a bit-matrix representation30. At this point,207

it is also worth acknowledging other formulations208

such as moving morphable components31, level-set209

method32,33 etc. The objective considered is to210

find the optimal discrete assignments of either air211

or a given poroelastic material to each finite el-212

ement that simultaneously maximises the normal213

sound absorption and minimises the volume frac-214

tion of the porous material. Mathematically, this215

formulation can be written as:216

Simultaneously,

max
χ

α(χ) =
1

nf

nf∑
i=1

α(χ, fi) (1)

min
χ

Vf (χ) =
1

ne

ne∑
i=1

χi (2)

χ ∈ {0, 1}ne

α ∈ [0, 1]

Vf ∈ [0, 1]

The first objective α ∈ [0, 1] is the sound ab-217

sorption averaged across the target frequencies218

(f1, f2, ...fnf
), and the second objective Vf is the219

porous volume fraction. Absorption α is averaged220

over a number of target frequencies nf , and porous221

material volume fraction Vf is averaged over the222

number of elements ne in the design domain.223

B. Computing the objectives224

Computing the volume fraction Vf for a given225

shape χ is quite straightforward from Equation 2,226

whereas computing absorption α is computation-227

ally expensive requiring solving a system of lin-228

ear equations. The procedure followed to compute229

absorption is the same as outlined in Ramamoor-230

thy et al.9. The acoustic system is modelled us-231

ing the unified Biot-Helmholtz model introduced232

by Lee et al.2, which considers air as a poroelas-233

tic material with negligible solid-part behaviour.234

In the unified model, air is considered to have235

χair = 0.001 to avoid numerical issues when solv-236

ing the system. Lee et al. also verified the valid-237

ity of such modelling for poroelastic materials with238

mixed formulations34.239

The most expensive part of computing α is240

finding the solution {X} to a system of linear241

equations [S̃(χ, f)]{X} = {F̃}, where the system242

matrix [S̃(χ, f)] is a square symmetric complex-243

valued matrix with dimensions of the order of the244

number of finite elements in the design domain,245

and {F̃} is the dynamic forcing vector of the same246

dimension. The system matrix [S̃(χ, f)] is pop-247

ulated with material properties of air or porous248
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material at specific submatrices depending on the249

shape χ. When considering continuous relaxation,250

for the intermediate materials i.e. χi ∈ (0, 1], the251

material properties are interpolated using a power-252

law i.e. any material property, say ψi is given by253

ψair + χpi (ψpor − ψair), where ψpor and ψair are254

the properties of the porous material and air re-255

spectively.256

Since evaluating absorption α is the computa-257

tional bottleneck and other algorithmic processes258

take a relatively insignificant amount of time, this259

is an expensive optimisation problem, and hence260

it is reasonable to use the number of absorption261

evaluations to benchmark the performance of al-262

gorithms.263

Computing the gradient of sound absorption264

with respect to the design variables takes approx-265

imately two more instances of solving the system266

of linear equations, making it twice as expensive267

as computing absorption:268

timeToCompute

(
∂α

∂χ

)
= 2× timeToCompute(α)

(3)
Such a quick computation of the gradient is269

achieved using a fictitious load vector pre-270

multiplication, as explained in Lee et al.12. Thus,271

computing both absorption and the gradient is 3272

times as expensive as computing just absorption.273

Therefore, the gradient methods will be given one-274

third the fitness evaluation budget.275

C. Benchmark problem instances276

To compare the optimisation approaches,277

seven benchmark problem instances previously in-278

troduced in Ramamoorthy et al.9 are adopted.279

The only difference here is that a modification has280

been made in the mesh size in problem instance281

3 in order to improve the model accuracy. For282

completeness, the details of the problem instances283

are provided in Table I. All the problem instances284

have a rectangular design domain but with vary-285

ing discretisation, the porous material filled, fre-286

quency range of interest, and dimensions. Table287

II provides the poroelastic material properties for288

the materials used in the problem instances. While289

the problem instance 1 uses the same material as290

Lee et al.2 with a high tortuosity, the third prob-291

lem instance uses a fictitious material with high292

airflow-resistivity, and all other problem instances293

use melamine.294

D. Experimental design295

Table III provides a quick summary of the opti-296

misation approaches used in this study along with297

a short description and pseudocode of each ap-298

proach. More detailed descriptions of each algo-299

rithm are provided in the following sections. Rea-300

sonable effort has been made to use each algorithm301

Table I. Benchmark problems (see section II C)

Problem Mesh size Length Height fmin fstep fmax Material

ID

instance nelx × nely D (m) d (m) Hz Hz Hz (see Tab.

II)

1 10× 10 0.135 0.054 100 100 1500 (1)

2 15× 10 0.045 0.1 100 100 1500 (2)

3 50× 20 0.1 0.1 50 50 500 (3)

4 10× 10 0.02 0.1 100 100 1500 (2)

5 10× 10 0.02 0.1 2000 1000 5000 (2)

6 50× 20 0.135 0.054 100 100 1500 (2)

7 10× 5 0.135 0.054 500 500 500 (2)

Table II. Materials used in the benchmark problems

and their properties (see Table I).

Material Material-1 Material-2 Material-3

parameters

Material: LKKK2 Melamine High-resistivity

foam

Acoustic model: JCAL35–37 JCAL JCAL

φ 0.9 0.99 0.8

Λ′ (µm) 449 196 100

Λ (µm) 225 98 10

σ (N·s·m−4) 25000 10000 300000

α∞ 7.8 1.01 3

k′0 4.75e-09 4.75e-09 4.75e-09

ρ (kg·m−3) 31.08 8 80

E (Pa) 800000 160000 30000

ν 0.4 0.44 0.44

η 0.265 0.1 0.01

in its recommended or best settings from parame-302

ter tuning and has been used in the standard way303

unless otherwise stated.304

All the strategies were given the same305

arbitrarily-chosen computational budget of 4096306

equivalent gradient-free fitness evaluations. Gra-307

dient algorithms are assigned 4096/3 ≈ 1365 fit-308

ness evaluations, and the non-gradient methods309

are allowed 4096 fitness evaluations. For the hy-310

brid algorithms, 25% of the computational effort311

was allotted for gradient-based search and 75% for312

non-gradient search i.e., 25% × 4096/3 gradient-313

included and 75%×4096 gradient-free fitness eval-314

uations.315

It should be noted, that in some trials on some316

problem instances, the resulting SIMP solutions317

had intermediate materials. In such scenarios, only318

the non-dominated solutions were discretised by a319

round-off filter and the fitnesses were recomputed.320

This is done so that all solutions compared in this321

study are from the discrete space to facilitate a fair322

comparison.323

To quantify and compare the non-dominated324

solution set produced by each algorithm, a hy-325

pervolume metric will be used. The hypervolume326

value corresponding to a given set of trade-off so-327

lutions is the scalar value equal to the union of328
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Table III. Optimisation approaches and their settings

Algorithm Description and pseudocode Deterministic

or stochastic

Trials Fitness evalu-

ation budget

per trial

Gradient-based approaches

SIMPrestart Solid isotropic material with penalisation (SIMP)

restarted with different volume fraction constraints

fixed for a trial: A gradient-based strategy with opti-

mality criteria move-update; following38. Initialised

with an empty design domain; Restarted with a new

V̄f until budget is used up.

Stochastic:

multiple

restarts within

trial

1 (mul-

tiple

restarts)

1365

(with gradi-

ent)

SIMPsweep SIMP with adaptive volume fraction constraint: Ini-

tialised with an empty design domain; Volume frac-

tion constraint V̄f updated after each fitness evalua-

tion reached 1 as budget approaches.

Deterministic 1 1365

(with gradi-

ent)

CHg Gradient-based constructive heuristic: Start from an

empty solution; Add porous material in steps of ‘m’

elements where the gradient is highest, until all ele-

ments are porous

Deterministic 1 min(N/m,1365)

(with gradi-

ent)

Non-gradient approaches

HC Hill climbing: Use a weighted-sum scalarisation tech-

nique to combine the two objectives into a single fit-

ness value. Apply first improvement hill climbing

starting from a random discrete solution. Move or-

der is like in a raster-scan.

Stochastic,

since initial

solution is

random

15 4096

(non-

gradient)

NSGA-II Non-dominated sorting genetic algorithm -II28: Use

a bit representation, tournament selection based on

crowding distance and rank, uniform crossover, bit-

wise mutation probability of 1/N .

Stochastic 15 4096

(non-

gradient)

RAND Random search algorithm: Picked a desired volume

fraction uniformly ∈ [0, 1]; Use this as the probability

of porous material at each element and synthesise a

solution. Repeat budget number of times.

Stochastic 15 4096

(non-

gradient)

Hybrid approaches

HA1 Hybrid approach 1: Run CHg using 25% of the bud-

get, and run hill climbing for 75% of the budget start-

ing from a selected solution with scalarisation weight

such that the combined objective isoline at the so-

lution point in objective space is tangential to the

Pareto front.

Deterministic

but depends

on the point

picked for hill

climbing

15 4096

(equivalent

non-gradient)

HA2 Hybrid approach 2: Run CHg using 25% of the bud-

get, and run NSGA-II for 75% of the budget starting

from an initial population from equispaced points in

the CHg Pareto front.

Stochastic 15 4096

(equivalent

non-gradient)

volumes in the objective space dominated by each329

solution over and above the objective values of a330

given reference solution. An illustration is shown331

in Figure 2. For the bi-objective problem un-332

der study, the hypervolume would simply be the333

area of the objective space that is dominated by334

the Pareto set obtained from the algorithms from335

a reference point. The reference point chosen is336

(α, Vf ) = (0, 1). Larger the hypervolume, the bet-337

ter the multiobjective performance can be consid-338

ered to be.339340
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Figure 2. (color online) An illustration of the hyper-

volume metric.

III. GRADIENT APPROACHES341

A. Solid-isotropic-material-with-penalisation(SIMP)342

Solid-isotropic-material-with-penalisation343

(SIMP) is a popular strategy for structural344

topology optimisation where the main idea is to345

consider a continuous relaxation of the material346

choices by using a power-law interpolation scheme.347

SIMP makes use of gradients to make incremental348

changes to the shape followed by the application349

of morphological filters39. In this paper, the im-350

plementation is adapted from the efficient 88-line351

code for compliance minimisation by Andreassen352

et al.38 replacing compliance and its gradients353

with absorption and its gradients, and making354

the material choices as air and porous material355

instead of solid and void. SIMP takes the desired356

volume fraction (V̄f ) as one of its algorithmic357

parameters. Two variants are considered namely,358

SIMPrestart and SIMPsweep.359

1. SIMPrestart360

In SIMPrestart, multiple trials of SIMP are361

run with each trial using a different V̄f . For each362

of these trials, SIMP was initialised from a random363

solution normalised to have an overall initial vol-364

ume fraction close to the chosen V̄f . Once conver-365

gence is achieved, SIMP is restarted with a new V̄f366

and a newly generated initial solution. Depending367

on V̄f and the initial solution, the algorithm con-368

verges to a variety of shapes as Figure 3(a) shows369

for problem instance 6. Each trial converged af-370

ter about 100 iterations. The process is continued371

until the budget of 1365 is used up.372

To populate the Pareto front, equispaced val-373

ues of V̄f were used in each trial. The solution374

progress in the objective space from SIMPrestart375

for all trials are shown in figure 3(b) for problem376

instance 6.377

2. SIMPsweep378

SIMPsweep starts from an empty or air-filled379

solution with an initial volume fraction limit V̄f =380

0, and applies SIMP move updates while updating381

V̄f in every iteration reaching V̄f = 1 as the fit-382

ness evaluation budget is reached. The solutions383

produced for problem instance 6 are plotted in the384

objective space in Figure 4, along with some of the385

shapes. It can be observed that as the volume frac-386

tion increases, the general trend is that absorption387

also increases. Notably for this melamine problem388

instance, some of the optimal shapes closely resem-389

ble flat layers. Whereas this is not always the case390

across problem instances.391

The solutions from SIMP algorithms did not392

always result in 0 or 1 shapes, and the shapes were393

rounded i.e., values less than 0.5 are set to 0 and394

more than 0.5 are set to 1, and the absorptions395

were recomputed. This involved additional fitness396

evaluations beyond the budget. Nevertheless, the397

resulting changes in absorption due to rounding398

were insignificant in most cases.399

A comparison of Pareto fronts of SIMPsweep400

and SIMPrestart is shown in Figure 6 for problem401

instance 6. It may be observed that for some vol-402

ume fraction values (Vf ≈ 0.1) SIMPsweep found403

better solutions while in others (Vf ≈ 0.6) SIM-404

Prestart did. In this problem instance, SIMPsweep405

seems to cover a larger hypervolume. However,406

upon observing the hypervolumes for all problem407

instances in Table V, there seems to be no clear408

winner between SIMPrestart and SIMPsweep since409

the former covered more hypervolumes in three410

problem instances while the latter covered more411

in the other four.412

Among the two, for lower fitness evaluation413

budgets, SIMPsweep is recommended since unlike414

in SIMPrestart, less computational time will be415

spent on initially reaching good solutions as also416

suggested by Suresh23.417

B. Constructive heuristic using gradient (CHg)418

Constructive heuristics are methods which in-419

crementally build solutions from scratch. In a420

previous study, a material-addition constructive421

heuristic (CH1) performed among the best ap-422

proaches in topology optimisation for maximising423

sound absorption9. In CH1, the procedure was424

to incrementally add porous materials to locations425

where the increase in absorption would be the high-426

est. However, finding the change in absorption at427

every finite element is computationally expensive428

and in this approach (CHg), they are replaced by429

gradients which are relatively cheap (Equation 3).430

CHg starts from an empty or air-filled design do-431

main, and fills porous material incrementally in432

finite elements where the gradient of sound ab-433

sorption ∂α
∂χi

is highest. At each step m number434

of elements are chosen to fill with porous material435

after each gradient evaluation, and the total num-436

ber of fitness evaluations necessary would be ne/m437

where ne is the total number of elements. m is cho-438

sen such that ne/m does not exceed the budget.439

Note that in the seven problem instances consid-440

ered, the number of elements are respectively 100,441

150, 1000, 100, 100,1000, and 50. Since the bud-442
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(a) (b)

Figure 3. SIMPrestart:(a) Best shapes from the first 4 trials on problem instance 6 with volume fraction limits

0.3, 0.4, 0.5 and 0.6 respectively. In these shape images and others, the rigid backing is on the right and the

acoustic forcing is on the left. (b) Progress in objective space for various trials. Each colour corresponds to a

different trial with different V̄f .

Figure 4. (color online) SIMPsweep: Pareto front for

problem instance 6, which uses melamine, results in

shapes that resemble flat layers.

get considered is 1365, all problem instances can443

be completed in ne fitness evaluations with m = 1.444

Hence, CHg will effectively utilise less fitness eval-445

uations than the budget in the cases considered.446

Note that CHg always will search solutions in the447

discrete space since an element is either filled or448

not filled. In this way, it is different from SIMP-449

sweep.450

The progress of solutions found by CHg ap-451

plied on problem 6 instance is shown in Figure 5 in452

the objective space along with a few shapes. Here,453

the shapes have two flat layers as opposed to one454

as found in SIMPsweep.455

C. Comparing gradient-based approaches456

Figure 6 compares the Pareto fronts produced457

by SIMPrestart, SIMPsweep and CHg algorithms458

for problem instance 6 as an example. Note459

that while SIMPrestart tends to leave gaps in the460

Pareto front, SIMPsweep and CHg finds more so-461

lutions and span the front well. There are specific462

regions where one algorithm performs better than463

the other two, but overall, these three approaches464

can be considered to be similar in terms of perfor-465

mance.466

Figure 5. (color online) Solution progress for con-

structive heuristic using gradients (CHg) applied on

problem instance 6

Figure 6. Comparison of gradient methods SIM-

Prestart, SIMPsweep and CHg for problem instance

6.

The hypervolumes covered by solutions from467

the gradient approaches are shown in Table IV.468

Among the three methods, SIMPrestart covered469

the most hypervolume in one problem instance,470

SIMPsweep in two problem instances and CHg in471

the other four, as emphasised by the bold font.472

However, the values are not significantly different473

among the three approaches.474
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Table IV. Hypervolume comparison of gradient based

approaches SIMPrestart, SIMPsweep and CHg

Instance SIMPrestart SIMPsweep CHg

1 0.7065 0.6835 0.6724

2 0.4014 0.4047 0.4066

3 0.7317 0.6063 0.7412

4 0.1160 0.1188 0.1087

5 0.5208 0.5292 0.5323

6 0.7202 0.7607 0.7512

7 0.8727 0.8567 0.8733

Figure 7. Solutions traversed by hill climbing (HC)

with combined Pareto front from 15 trials compared

against CHg Pareto front. HC finds improvements over

CHg.

An important aspect to note is the possibility475

to speed up SIMPsweep and CHg if required. For476

instance, if only 1/10th of the fitness evaluation477

budget is allowed, in SIMPsweep, the volume frac-478

tion constraint V̄f would be adapted 10 times more479

quickly to reach 1 as the budget is used up. Sim-480

ilarly for CHg, one can simply increase m which481

is to add more elements with porous material in482

each iteration. Though this risks potentially miss-483

ing several trade-off solutions, the quality of the so-484

lutions would not be significantly affected. This is485

because, every next solution found by SIMPsweep486

or CHg is an incremental perturbation from an al-487

ready good solution. Although, for SIMPrestart,488

speed-up can be achieved by tuning the move limit489

parameter m38, there are some caveats to doing490

this such as the occurrence of numerical oscilla-491

tions.492

IV. NON-GRADIENT APPROACHES493

A. Hill climbing494

Hill climbing is a heuristic for single objective495

optimisation. Typically, a single initial solution is496

picked and iteratively modified, and the modified497

solution is accepted as the current solution if it is498

improving.499

In this implementation, to allow choosing ini-500

tial solutions spread out in volume fraction, a de-501

sired volume fraction is first picked randomly be-502

tween 0 and 1, and this value is used as the prob-503

ability to fill porous material in each element.504

From the initial solution, elements are bit-
flipped row-by-row, and the change is accepted if
the scalarised objective function decreases. This
is similar to HC in Ramamoorthy et al.9 but with
a weighted-sum scalarisation, in which the two ob-
jectives are combined into one as given in Equation
4.

min
χ

C = −wα+ (1− w)Vf (4)

The weight w corresponds to the importance of505

maximising absorption as opposed to minimising506

volume fraction and can take values between 0 and507

1. A weight of 1 implies maximising only absorp-508

tion irrespective of volume fraction, and likewise, a509

weight of 0 corresponds to only minimising volume510

fraction. An illustration of the effect of choosing511

w on the scalarised objective is shown in Figure 8.512

Note that w governs the slope of the isolines of the513

scalarised objective. This will be relevant later.514

For each trial run of HC, a fixed weight is cho-515

sen. Then, hill climbing on the combined objective516

is done until the fitness evaluation budget is used517

up. 15 such trials are run with different weights.518

Figure 7 shows all solutions from 15 trials of HC519

for problem instance 1 compared with CHg solu-520

tions. The trails of points in the figure correspond521

to individual trials improving solutions in a specific522

direction depending on the chosen weight. The523

combined results from HC are better than those524

of CHg in some regions in both α and Vf , indicat-525

ing that the gradient methods do often converge to526

local-optimal solutions, and potential for improve-527

ments exist.528

An issue with HC is that only a specific re-529

gion in the Pareto front will be explored in a given530

trial. The trial-averaged hypervolumes are signifi-531

cantly lower than the combined hypervolume over532

15 trials as may be observed by comparing the HC533

columns in Tables V and VI. This is because us-534

ing a set scalarisation weight for a trial guides the535

search towards a specific region in the Pareto front.536

B. Non-dominated sorting genetic algorithms (NSGA-537

II)538

NSGA-II is a popular multi-objective optimi-539

sation strategy introduced by Deb et al28. It540

has been effectively used in solving multi-criteria541

decision-making problems across a plethora of542

fields. In this implementation, a single-point cross543

over with an individual cross-over probability of 0.9544

is applied with a bit-wise mutation rate of (1/ne)545

where ne is the chromosome length and a popula-546
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Figure 8. (color online) The effect of weights in weighted-sum scalarisation on the slope of the isolines of combined

objective value.

tion size of 32. These parameters were found using547

parameter-tuning studies on genetic algorithms9.548

Figure 9 shows the progress of solutions in the549

objective function space for one trial of NSGA-II550

for problem instance 1. In the figure, each point551

refers to a particular shape and the colour corre-552

sponds to the generation in which it was found. We553

can observe that as the generations progress (from554

blue towards red), the solutions tend towards more555

sound absorption and less volume fraction.556

Figure 9. (color online) NSGA-II progress of solutions

in the objective function space for problem instance 1

trial 1.

C. Random Search (RAND)557

For benchmarking the performance of HC and558

NSGA-II, a random search algorithm referred here559

as RAND is applied on all seven problem instances.560

Random solutions spread across volume fraction561

are obtained by choosing a random number for de-562

sired volume fraction, and using this value as prob-563

ability to fill porous material in each element. 4096564

such solutions are generated and fitnesses are eval-565

uated in each trial, and 15 such trials were run. Us-566

ing non-dominated sorting on each trial separately567

and across all 15 trials, the trial-averaged and 15-568

trial-combined hypervolumes were found and pop-569

ulated in tables V and VI.570

D. Comparison of non-gradient algorithms571

1. Performance per trial572

Comparing the median-trial hypervolumes573

from HC and NSGAII in Table V, it is clear that574

NSGA-II is consistently better across all problem575

instances. This is because based on the choice576

of scalarisation weight, in a given trial, HC only577

explores a specific region in the Pareto front.578

Whereas, NSGA-II spans the objective space effec-579

tively due to the crowding distance-based selection580

mechanism. NSGA-II also outperforms RAND in581

all problem instances, but interestingly, HC on a582

per-trial basis, does not outperform even RAND.583

Moreover, RAND outperforms HC across all prob-584

lem instances. This is because HC in a single trial585

is essentially a single-objective algorithm that does586

not incentivise spanning the hypervolume.587

2. Performance across 15 trials combined588

Figure 10. (color online) Combined Pareto fronts from

15 trials of HC, NSGA-II and RAND on problem in-

stance 1.

Combining 15 trials of HC run with different589

weights results in a better hypervolume than com-590

bined results of 15 trials of NSGA-II consistently591

across all problem instances as can be observed in592

Table VI (see columns HC vs NSGA-II). As an ex-593

ample, for problem instance 1, by comparing the594

Pareto fronts in Figure 10, it is clear that HC so-595

lutions often have better absorption for the same596

volume fraction than NSGA-II. Both NSGA-II and597

HC cover a larger hypervolume than RAND by a598

large margin.599
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V. HYBRID APPROACHES600

From the studies on gradient and non-gradient601

algorithms, it was evident that gradient methods602

can quickly approximate the Pareto front, whereas603

non-gradient methods can provide improvements604

in specific regions of the Pareto front.605

In order to obtain the benefits of both, two hy-606

brid approaches combining a gradient-based algo-607

rithm for initiation and a non-gradient algorithm608

for improvement is presented and compared. The609

first hybrid approach is a combination of CHg and610

HC denoted as HA1, and the second hybrid ap-611

proach is a combination of CHg and NSGA-II de-612

noted as HA2. We picked CHg as the initiator613

mainly because, it guarantees discrete solutions614

and allows the possibility to speed up (see III C).615

A. Hybrid approach 1: CHg+HC616

Hybrid approach 1 (HA1) combines the use of617

CHg for 25% of the budget and HC for the remain-618

ing 75% of the budget. These numbers are arbi-619

trarily chosen with some basis on experience. Since620

CHg is gradient-based, and gradient-included eval-621

uations are thrice as expensive as non-gradient fit-622

ness evaluations (Equation 3), the rationing is such623

that CHg uses 25%×( 4096
3 ) fitness evaluations and624

HC uses 75%× ( 4096
1 ).625

Figure 11 illustrates the procedure involved in626

HA1. Firstly, CHg is run to obtain a trade-off so-627

lution set. Then, 15 solutions are selected from628

the CHg trade-off set equispaced in volume frac-629

tion to use as initial solutions for each of the 15630

HC trials. For each HC trial, a different scalari-631

sation weight w is used such that the isolines of632

the combined objective C has a slope tangential to633

CHg Pareto front at the initial solution. The slope634

of the Pareto front at the initial solution is ob-635

tained using a simple central difference of adjacent636

points. This ‘Pareto-slope-based scalarisation’ ef-637

fectively guides HC to find improvements to the638

Pareto front. HC is run until the remaining bud-639

get is used up. As seen in Figure 11, in each trial,640

only a specific region is explored. The hypervol-641

umes covered after each trial and after combining642

all 15 trials are computed.643

The per-trial median hypervolumes and 15-644

trials-combined hypervolumes obtained by HA1645

are provided in Tables V and VI for all problem646

instances.647

B. Hybrid approach 2: CHg+NSGA-II648

Hybrid approach 2 (HA2) combines CHg and649

NSGA-II in a similar fashion i.e., CHg uses 25% of650

the budget, NSGA-II uses the remaining 75%. The651

rationing of fitness evaluations is similar to that in652

HA1.653

Originally, the final solution set from CHg was654

meant to be used as the initial population for655

Figure 11. (color online) Hybrid approach 1 illus-

tration of a trial for problem instance 1. Apply CHg

for 25% of the budget. Pick an initial solution on the

CHg Pareto set. Set scalarisation weight such that

the isolines of the combined objective are tangential

to the Pareto front at the selected CHg point. Apply

hill climbing for the rest of the fitness evaluation bud-

get. The final Pareto set after combining 15 trials each

starting from equispaced points on the CHg Pareto set

are shown using ‘x’ markers.

Figure 12. (color online) Hybrid approach 2: CHg run

for 25% of computational budget, and then using the

Pareto set as the initial population, NSGA-II is run for

the remaining budget. Solutions traversed by NSGA-

II in one of the 15 trials are shown in blue dots. The

combined Pareto front from 15 trials is shown in red

crosses.

NSGA-II in each trial. However, on some occasions656

the CHg Pareto front contained more or less solu-657

tions than the population size assigned for NSGA-658

II. Hence, when there were more solutions in CHg659

Pareto set, only 32 solutions equispaced in volume660

fraction were considered as the initial population661

for NSGA-II, and when there were less solutions,662

they were duplicated using the selection process in663

the first generation. Then NSGA-II is run for the664

remainder of the budget.665
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Figure 12 shows the solutions searched in an666

example trial out of the 15 trials that were run for667

problem instance 1. The combined Pareto front668

from 15 trials is then plotted using red crosses.669

It may be observed that in the low volume frac-670

tion regions, the solutions from NSGA-II never671

seem to improve. This is because crossover and672

mutation operations always produced worse solu-673

tions. The hypervolumes covered by the median674

trial and the overall hypervolume of the combined675

non-dominated solutions across 15 trials of HA2676

are provided in Tables V and VI.677

C. Overall comparison678

1. Trial-averaged performance for 4096 budget679

For a computational budget of 4096 gradient-680

free fitness evaluations, Table V shows the result-681

ing hypervolumes covered by all algorithms used682

in this study. It should be noted that CHg did683

not need to use the entire budget. Since in each684

iteration, CHg has to fill at least one element, the685

entire design domain can be filled with only {100,686

150, 1000, 100, 100, 1000, 50} fitness evaluations687

respectively for problem instances 1 through 7.688

Keeping this in mind, the table shows that689

HA2, a combination of CHg and NSGA-II, cov-690

ers the most hypervolume in 4 out of 7 prob-691

lem instances on average per trial. Note that692

HA2 also performs better than stand-alone NSGA-693

II for the same budget. While it is evident694

that gradient-based initialisation boosts the per-695

formance of NSGA-II, it is interesting to note696

that HA2 can perform better that SIMPrestart or697

SIMPsweep which are normally used in practise.698

Thus, if one has a fixed computational budget, to699

cover the most hypervolume, a reliable strategy is700

to use a combination of CHg followed by NSGA-II.701

Also, it is worth noting that SIMPsweep per-702

forms the best in two problem instances and CHg703

performs best in one problem instance. Notably,704

SIMPsweep and CHg are also scalable for lower705

budgets. These three algorithms may be recom-706

mended for applications such as software imple-707

mentations in the initial stages of design that need708

to quickly come up with trade-off acoustic solu-709

tions within a set computational budget.710

2. Combined performance of 15 trials each with711

4096 budget712

It is also of interest to identify effective strate-713

gies that find solutions with best attainable qual-714

ity with relaxed computational time budgets, such715

as for manufacturing best acoustic designs. Ta-716

ble VI shows the resulting hypervolumes covered717

by a combination of 15 trials which is equivalent718

to 15*4096 gradient-free function evaluations. For719

this comparison, we do not include the gradient720

methods as they did not use the same budget.721

In this study, HC shows a significant improve-722

ment as it is able to combine the good solutions723

from various regions of the Pareto front. For the724

same reason HA1 (CHg+HC) also performs excep-725

tionally well, producing the best hypervolumes in726

6 out of 7 problem instances. This shows that the727

proposed Pareto-slope-based weighted-sum scalar-728

isation technique with a simple greedy hill climb-729

ing algorithm can be used as an effective local730

improvement strategy. A take-away is that be-731

fore manufacturing an optimal shape using any732

multi-objective topology optimisation approach, it733

is worth ensuring that there exists no other domi-734

nating solution that HC can find.735

Between NSGA-II and its hybrid counterpart736

HA2, the latter seems to cover more hypervolumes737

across all problem instances. This is again an ex-738

ample of a hybrid approach performing better than739

its parent approach. HA2 also performed the best740

in one of the seven problem instances, and comes741

close to the performance of HA1. This show that742

there is benefit to using hybrid strategies involving743

gradient initialisers with non-gradient improvers.744

3. Pareto front comparison for all algorithms745

combined across 15 trials746

The problem of topology optimisation has no747

exact algorithms that run in practical times to con-748

firm the true Pareto-optimal solutions. Neverthe-749

less, it is of interest to see which algorithms con-750

tribute to finding the best known solutions in the751

Pareto diagram.752

Hence, we compare the Pareto fronts obtained753

from all algorithms in one place. As an example,754

this is shown for problem instance 1 in Figure 13.755

The gradient algorithms are marked in blue, non-756

gradient in red and hybrid in green.757

It should be noted that the Pareto fronts for758

gradient algorithms are obtained from only one759

trial, while results for other algorithms are from a760

combination of 15 trials. Hence, one cannot draw761

a direct comparison across gradient strategies and762

others.763

Among the three gradient algorithms, it may764

be observed that CHg finds better absorbing so-765

lutions in lower volume fractions up to 0.3, and766

the SIMP algorithms found better solutions after767

Vf = 0.3.768

Among non-gradient algorithms, it is clear769

that all approaches perform better than random770

search, but there is no single clear winner between771

HC and NSGA-II.772

Hybrid algorithms work best to cover the most773

hypervolume, but interestingly, there are some re-774

gions where HC produces better non-dominated775

solutions (see between Vf=0.1 and 0.3). This776

shows that one cannot ignore HC just because the777

hypervolume spanned is poor. The potential of HC778

for local exploration needs to be recognised.779
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Table V. Median hypervolumes obtained while running one trial with a budget equivalent to 4096 gradient-free

fitness evaluations. HA2 seems to perform best when considering the trial-averaged performance for 4096 fitness

evaluations.

Gradient-based Gradient-free Hybrid

Fitness

evaluations

1365 1365 min(ne/m,1365) 4096 4096 4096 4096 4096

Instance/ Alg SIMPrestart SIMPsweep CHg HC NSGAII RAND HA1 HA2

1 0.7065 0.6835 0.6724 0.5622 0.6824 0.5915 0.7013 0.7170

2 0.4014 0.4047 0.4066 0.2684 0.3427 0.3212 0.4066 0.4068

3 0.7317 0.6063 0.7412 0.5908 0.6336 0.6061 0.7343 0.7184

4 0.1160 0.1188 0.1087 0.0893 0.1148 0.1085 0.1122 0.1174

5 0.5208 0.5292 0.5323 0.3798 0.4847 0.4561 0.5324 0.5327

6 0.7202 0.7607 0.7512 0.5430 0.6159 0.6211 0.7603 0.7601

7 0.8727 0.8567 0.8733 0.7133 0.8531 0.7677 0.8733 0.8758

Table VI. Hypervolume combined over 15 trials are compared in this table. These hypervolumes are also contrasted

with those of single trials of gradient algorithms. HA1 seems to perform consistently better when considering a

combination of 15 trials of 4096 fitness evaluations.

Gradient-free Hybrid

Instance HC NSGAII RAND HA1 HA2

Budget 15*4096 15*4096 15*4096 15*4096 15*4096

1 0.7436 0.7302 0.6221 0.7438 0.7307

2 0.4029 0.3613 0.3329 0.4081 0.4074

3 0.7772 0.6878 0.6219 0.8104 0.7295

4 0.1144 0.1169 0.1107 0.1195 0.1190

5 0.5212 0.5034 0.4708 0.5343 0.5337

6 0.7509 0.6310 0.6269 0.7646 0.7606

7 0.8407 0.8725 0.8021 0.8755 0.8759

VI. CONCLUSION780

In this article, several multi-objective strate-781

gies were compared to identify effective ap-782

proaches for quickly obtaining lightweight and783

high-absorbing acoustic shape designs within a784

given amount of computational effort. Three785

gradient strategies—SIMPrestart, SIMPsweep and786

CHg, two gradient-free strategies—HC and NSGA-787

II, and two hybrid strategies—HA1 (CHg+HC)788

and HA2 (CHg+NSGA-II), were studied. The789

findings are highlighted as follows.790

1. Gradient algorithms often get stuck at local-791

optimal shapes indicated by the fact that792

non-gradient approaches have been able to793

find better solutions in terms of both absorp-794

tion and volume fraction objectives.795

2. Reusing solutions from SIMP with an adap-796

tive volume fraction constraint (SIMPsweep)797

is better at spanning the Pareto front than798

restarting SIMP at various volume fraction799

constraints (SIMPrestart).800

3. A simple new gradient-based constructive801

heuristic (CHg) is introduced that guaran-802

tees discrete solutions while also being scal-803

able and as performant as SIMP algorithms.804

4. Hybrid approaches using gradient algorithms805

as initialisers and non-gradient algorithms as806

exploiters seem to be more effective than any807

parent gradient or non-gradient algorithm for808

the same computational budget.809

5. Hill climbing with a Pareto-slope-based810

weighted-sum scalarisation proves to be an811

effective local search technique to improve so-812

lutions near the Pareto front.813

If the goal is to quickly find a set of trade-off814

shapes, such as to use in software applications,815

then any gradient approach or a hybrid approach816

with CHg and NSGA-II would be more suitable. If817
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Figure 13. (color online) Comparison of non-dominated solutions from all algorithms for problem instance 1.

Colours blue, red and green correspond to gradient, non-gradient and hybrid algorithms respectively. Gradient

algorithm results are from one trial, whereas non-gradient and hybrid algorithm results are from a combination

of 15 trials. Hence they must not be compared.

the goal is to obtain the optimised shape designs of818

the best attainable quality for manufacture, then a819

hybrid approach with CHg and hill climbing with a820

Pareto-slope-based scalarisation seems to be more821

suitable. If the interest is to find the best attain-822

able trade-off solutions to a problem, then no algo-823

rithm is a clear winner. Algorithms such as HC oc-824

casionally find better solutions in specific regions825

than their hybrid counterpart and cannot be ig-826

nored.827
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