
Comparison of heuristics and metaheuristics for
topology optimisation in acoustic porous materials

Vivek T. Ramamoorthy,
1, a)

Ender Özcan,
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When designing sound packages, often fully filling the available space with acoustic materials
is not the most absorbing solution. Better solutions can be obtained by creating cavities of air
pockets, but determining the most optimal shape and topology that maximises sound absorp-
tion is a computationally challenging task. Many recent topology optimisation applications
in acoustics use heuristic methods such as solid-isotropic-material-with-penalisation (SIMP)
to quickly find near-optimal solutions. This study investigates seven heuristic and meta-
heuristic optimisation approaches including SIMP applied to topology optimisation of acous-
tic porous materials for absorption maximisation. The approaches tested are hill climbing,
constructive heuristics, SIMP, genetic algorithm, tabu search, covariance-matrix-adaptation
evolution strategy (CMA-ES), and di↵erential evolution. All the algorithms are tested on
seven benchmark problems varying in material properties, target frequencies, and dimen-
sions. The empirical results show that hill climbing, constructive heuristics, and a discrete
variant of CMA-ES outperform the other algorithms in terms of the average quality of solu-
tions over the di↵erent problem instances. Though gradient-based SIMP algorithms converge
to local optima in some problem instances, they are computationally more e�cient. One of
the general lessons is that di↵erent strategies explore di↵erent regions of the search space
producing unique sets of solutions.
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I. INTRODUCTION

A. Background

Historically, shape designs in engineering have been
arrived at via a trial-and-error process, intuition, incre-
mental improvements to old designs, human decision-
making from numerical analyses, and recently, solely by
computer analyses. Superior-to-human engineering de-
signs have been achieved by computers using technolo-
gies such as structural topology optimisation. Topology
optimisation involves finding the optimal topology (num-
ber of holes) and shape (size, dimensions) for a structure
such that a given performance indicator is either max-
imised or minimised. Bendsøe and Kikuchi1 introduced
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the concept of simultaneously optimising both shape and
topology in the late 1980s. Since then, many theoretical
developments have been made, and a community of re-
searchers has actively been working in this field. One of
the ways to formulate a topology optimisation problem is
finding the optimal assignment of materials in each finite
element of a discretised structure. In principle, this for-
mulation is discrete optimisation, and finding the exact
global optimum is computationally challenging. Exact
optimisation techniques that guarantee to find the global
optimum remain prohibitively expensive. Evaluating all
possible solutions becomes impractical due to the large
search space sizes and the expensive finite element eval-
uations. A noteworthy e↵ort towards topology optimisa-
tion using an exact approach was by Stolpe and Bendsøe2

on the Zhou and Rozvany problem instance3. But justi-
fiably, the focus of previous work has mainly been on the
inexact or heuristic optimisation approaches.

B. Heuristics

Heuristics are techniques that find solutions close-
enough to the global optimum in reasonable time.
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Though heuristics do not guarantee to find the opti-
mal solution, they are well-established and often the
only viable option to address hard problems, such as
those in NP-complete and NP-hard classes. The three
most popular heuristic approaches applied to topol-
ogy optimisation problems are solid-isotropic-material-
with-penalisation(SIMP)1,4–6, bi-directional evolution-
ary structural optimisation BESO7–9, and the level-set
method10–12. Among these, SIMP is the most commonly
used and well-studied approach. In this approach, the
discrete problem is relaxed to the continuous space by
allowing intermediate materials between solid and void.
A penalty-based material interpolation scheme is used
to represent intermediate materials and a gradient-based
optimisation strategies such as optimality criteria13 or
method of moving asymptotes14 are used to move across
the design variable space to find a near-optimal design.
As SIMP is a derivative-based technique, it requires that
a sensitivity analysis be carried out. BESO, not to be
confused with evolutionary algorithms despite its name,
is a type of constructive approach which iteratively adds
material where stresses are high and removes material
where stresses are low to arrive at a design. In the level-
set method, a scalar field is associated with the design
domain region and the isosurfaces of this scalar field are
made the boundaries of the topology. This scalar field is
then optimised to optimise the topology.

C. Metaheuristics

While heuristics are quick strategies to find near-
optimal solutions, it was realised by Glover15 that many
powerful heuristic approaches follow certain higher-level
guidelines. These guidelines can be considered heuris-
tics to design heuristic algorithms, and hence are termed
metaheuristics. A popular example of a metaheuristic is
genetic algorithms, wherein the guideline is to initiate a
population of solutions, apply selection pressure to pick
good individuals, recombine the selected individuals, mu-
tate them and replace them into the population. Numer-
ous metaheuristic techniques, such as genetic algorithms
and CMA-ES, have also been studied on structural topol-
ogy optimisation problems16,44.

D. Acoustic topology optimisation

Theoretical developments in structural topology op-
timisation have focused on the classical problem of com-
pliance minimisation18,19. Nevertheless, the application
of topology optimisation techniques to other problem do-
mains is steadily on the rise18,20,21. These techniques
have already been extended to acoustics, giving rise to a
sub-field called acoustic topology optimisation.

At the time of writing this article, topology op-
timisation has been performed on a variety of acous-
tic applications, including horns, mu✏ers, rooms and
sound barriers22–36. A majority of these applications
use the gradient-based SIMP method or its variants,
while a small fraction of them use BESO or level-set

methods. These applications can be categorised into
acoustic fluid-structure interaction problems and porous
material problems. In acoustic fluid-structure interac-
tion problems, the material choices are non-porous solid
and fluid phases, and the wave propagation is mod-
elled using mixed formulations37,38. Within acoustic
fluid-structure interaction, problems other than topology
optimisation such as material parameter estimation39

have also found the application of gradient-based meth-
ods such as the method of moving asymptotes40. In
porous material topology optimisation problems, the ma-
terial choices also include poroelastic materials, and spe-
cialised Biot formulations41,42 are generally used. In
some applications31,43, boundary element method is used
to optimise the boundary topology instead of the bulk
topology. In this article, poroelastic material topology
optimisation is in focus. Specifically, we refer to topology
optimisation in the context of finding optimal mesoscale
shapes and topologies, i.e., on the order of magnitude of
the material thickness, and not the optimisation of their
microstructures.

Although metaheuristics have been previously
tested on classical structural topology optimisation
problems16,44, their use has been limited in acoustic
topology optimisation applications17,45. Only a few opti-
misation approaches have been tested, and optimisation
theory exclusive to this problem domain remains yet to
be explored. The present work is a step in this direction.

E. Contributions in this work

The goal of the present work is to investigate the
performance of alternative heuristic optimisation ap-
proaches, including a few well-known metaheuristic ap-
proaches on a set of benchmark problems. In this article,
the approaches compared are hill climbing, constructive
heuristics, SIMP, genetic algorithms, tabu search, CMA-
ES and di↵erential evolution. While SIMP and its vari-
ants use gradients, none of the other approaches use any
domain-specific information from the problem other than
the objective function. Optimisation tests show how dif-
ferent approaches perform for various CPU time budgets.
Notably, while SIMP algorithms produce good-quality
solutions at low CPU time budgets, certain other algo-
rithms such as hill climbing, constructive heuristics and
CMA-ES outperform at higher computational budgets.
The findings reported in this paper may serve as a useful
prelude to develop better strategies for topology optimi-
sation in acoustic porous materials.

The article is organised as follows: the optimisation
problem description and the modelling methodology are
given in Sec. II, concise descriptions and settings of
the optimisation approaches are given in Sec. III, and
the results from the optimisation tests are discussed in
Sec. IV. Further, the pseudocodes of all algorithms,
runtime comparisons, solution quality distributions, and
final optimal shapes from all algorithms for all problem
instances are included in the supplementary material.60
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FIG. 1. Finite element model of an impedance tube system

with the design domain where the shape and topology of a

poroelastic material is to be optimised.

II. PROBLEM DESCRIPTION AND MODELLING

A. Maximising sound absorption in normal incidence

Consider the following problem: Given a finite ele-
ment model of an impedance tube as shown in Figure 1,
what is the best assignment of either air or a given poroe-
lastic material to each element in the design domain that
maximises the sound absorption of an acoustic source?
The optimisation formulation can be written as:

max
�i

↵(�) =
1

n

fnX

f=f1

↵(�, f) (1)

� : �i 2 {0, 1} 8 i = 1, 2, . . . , N

↵ 2 [0, 1]

where ↵(�, f) is the sound absorption coe�cient in nor-
mal incidence for a given shape � for frequency f , �i are
the decision variables represent the choice between air
and porous material for the ith element, N is the number
of elements in the design domain, and f1, f2, ..., fn are the
target frequencies for which the mean absorption is to be
maximised (where n is the number of frequencies consid-
ered). The symbol ↵ is used to refer to the mean sound
absorption coe�cient (↵) across the target frequencies.
In this paper, ↵ may be referred to as simply absorption
or fitness, which is to be maximised.

Note that in Eq. (1), a volume fraction constraint is
not included, which is unlike in usual topology optimi-
sation problems. One reason is that in porous material
topology optimisation, often the optimal shapes need to

be carved out from a large block of the base porous ma-
terial. The removed material may not often constitute
material-saving, as the cost of recycling the carved out
material could negate the material-saving benefit. An-
other reason is that more optimisation approaches to be
tested as the formulation would resemble a conventional
discrete optimisation problem. Without the volume con-
straint, since two choices are available (air or the base
porous material) for each of the N elements in the design
domain the search space size becomes 2N . If a limit
Vf is imposed on the ratio of porous volume to the to-

tal volume in the design domain ( 1
N

PN
i=1 �i = Vf ), the

search space size would become NC(VfN). In both these
cases, the number of feasible solutions grows quickly with
an increase in N . Since discrete optimisation is consid-
ered di�cult to solve, the problem is usually relaxed to
a continuous problem allowing �i to take values between
0 and 1, in other words allowing intermediate materials
between air and porous material in the design domain.
The problem is then solved using continuous optimisation
approaches. Intermediate materials given by �i 2 (0, 1)
are modelled using interpolating the material properties.
One such interpolation scheme is the SIMP scheme (not
to be confused with the SIMP approach). Using this
scheme, the material property  for the intermediate ma-
terial is given by Eq. (2).

 i =  air + �p
i [ por �  air] (2)

 2 {E, ⌫, e⇢, e�s, e⇢eq, eKeq} (3)

Here,  is any material property from Young’s modu-
lus (E), Poisson’s ratio (⌫), modified Biot density (e⇢),
coupling factor ( e�s), dynamic mass density (e⇢eq), dy-

namic bulk modulus (eKeq), etc. Though filtering tech-
niques and interpolation penalties are used to enforce
discrete solutions in such continuous formulations, often
the resulting solutions tend to have intermediate mate-
rials, i.e., �i 2 (0, 1). Since filters in topology optimisa-
tion play a role in the optimisation performance, in this
study no filters or manufacturability restrictions are con-
sidered—with the view that these can be done in post-
processing.

B. Computing sound absorption and its gradients

To compute sound absorption, the poroelastic system
constituting the fixed and design domains is modelled
using the alternative Biot finite element formulations de-
scribed by Bécot and Jaouen.42 This formulation is based
on the mixed {u,P} formulation by Atalla et al.41 The
acoustic model for the fluid part is given by the Johnson-
Champoux-Allard-Lafarge (JCAL) model.46–48 To natu-
rally account for the interface between porous and air
regions, the unified analysis approach proposed and veri-
fied by Lee et al24 is adopted. For intermediate material
properties between air and porous material, the SIMP
interpolation scheme49 is used. The poroelastic system
governing equations can be expressed in matrix form in
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Eq. (4).

"
K̃� !2M̃ �C̃

�C̃T H̃/!2 � Q̃

#

| {z }
S̃(!)

(
{u}
{P}

)

| {z }
X̃(!)

=

(
F̃u

F̃P/!2

)

| {z }
F̃

(4)

where (̃·) denotes the complex-valued nature of its argu-
ment. The expressions for the state matrices K̃, M̃, H̃,
Q̃ and C̃ are functions of the topological design/decision
variables � . The construction of these matrices are ex-
plained by Atalla et al.41 and will not be detailed here.
{u} and {P} denote the solid phase displacement and
fluid phase pressure degrees of freedom in the poroelastic
system respectively. The associated global sti↵ness ma-
trix S̃(!) and the load vector F̃ are iteratively assembled
over each angular frequency ! = 2⇡f to yield a system of
linear equations. These equations are solved as given in
Eq. (5) to obtain the solution vector X̃(�,!) which will
contain the displacement and pressure fields of the solid
and fluid parts of the poroelastic material respectively.

{X̃(�,!)} = [S̃(�,!)]�1{F̃} (5)

For normal incidence, assuming plane waves, the sound
absorption coe�cient can be computed using the two-
microphone method. Considering two closely spaced
points x1 and x2 in the air region, the complex pres-
sure amplitudes in frequency domain Px1 and Px2 can
be obtained from {P} in X̃. The plane wave reflection
coe�cient R̃c can then be computed from these pressures
as,

R̃c(�,!) =
Px1(�,!)e

(�ikx2) � Px2(�,!)e
(�ikx1)

�Px1(�,!)e
(ikx2) + Px2(�,!)e

(ikx1)
(6)

Here, k is the wave number given by !/cair with cair
being the speed of sound in air. The sound absorption
coe�cient ↵ is then given by:

↵(�,!) = 1� |R̃c(�,!)|2 (7)

The analytical gradient of absorption can be com-
puted by using chain rule following a similar procedure
to that of Lee et al.24 From Eq. (7):

@↵

@�i
= �2|R̃c|

@|R̃c|
@�i

(8)

@|R̃c|
@�i

=
<(R̃c ⇥ @R̃c

@�i
)

|R̃c|
(9)

Eq. (9) computes the derivative of absolute of the
complex-valued R̃c, <(·) is the real part and (·) is the

complex conjugate operator. The gradient @R̃c
@�i

is ob-

tained from
@Px1
@�i

and
@Px2
@�i

, which in-turn are two ele-

ments from the derivative vector @X̃
@�i

. To find @X̃
@�i

, Eq.

(5) is di↵erentiated to get the following expression.

@

@�i
X̃(�,!) = [S̃(!)]�1�@[S̃(!)]

@�i
X̃ (10)

The above step involves a large matrix inversion followed
by sparse matrix and vector multiplications repeated for
each element in the design domain. This step is per-
formed e�ciently by using the adjoint-based approach as
detailed by Lee, Göransson and Kim.28 Since only two

elements in @X̃
@�i

i.e.,
@Px1
@�i

and
@Px2
@�i

need to be computed

to compute the gradients, one can premultiply Eq. (10)

by the term
@Px1
@X , which is a vector of 0s except for one

element with a value of 1 corresponding to the Px1 degree
of freedom in Eq. (10.)

@Px1

@�i
=

✓
@Px1

@X

◆T @X̃

@�i
(11)

=

✓
@Px1

@X

◆T

[S̃]�1�@[S̃]
@�i

X̃ = �Tx1

�@[S̃]
@�i

X̃

Then, one can find a fictitious response vector �x1 =

[S̃]�1 @Px1
@X and compute

@Px1
@�i

for each i by computing

�Tx1

��@[S̃]
@�i

X̃
�
quickly. This avoids solving system of equa-

tions repeatedly for each element or performing explicit
matrix inversions. The above step is crucial for speeding-
up gradient methods. In addition to solving [S̃(!)]�1F̃,
two additional instances of solving system of equations is
involved in finding �x1 and �x2. Assuming all other steps
are time insignificant, function evaluation with gradients
are approximately three times as expensive as evaluating
without gradient.

This procedure has to be repeated at each frequency
! and for fine frequency steps, the calculation could
become expensive. Although not implemented in this
work, it is worth noting that there exist various expan-
sion methods50–52 to speed up the computation for broad
frequency range problems.

Further, the gradients �@[S̃]
@�i

are obtained by
applying chain rule up to the material properties
(E, ⌫, e⇢, e�s, e⇢eq, eKeq) which depend on the design vari-
ables �.

C. Benchmark problem instances

For comparing the performance of various optimi-
sation approaches, seven benchmark problem instances
with di↵erent characteristics as given in Table I are
utilised. A two-dimensional finite element model of a
small rectangular unit cell of an absorbing wall, as shown
in Fig. 1 is considered. The unit cell’s dimensions, its
discretisation into finite elements, the base porous ma-
terial to fill the elements, and target frequencies to be
absorbed vary for each problem instance.

The unit cell of height d is backed by a rigid wall on
the right, and a normal incidence sound source is mod-
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TABLE I. Benchmark problem instances (see section II C)

No. Problem instance name Mesh size Length Height fmin fstep fmax Material ID

nelx ⇥ nely D (m) d (m) Hz Hz Hz (see Table II)

1 LKKK material broadband coarse-mesh 10⇥ 10 0.135 0.054 100 100 1500 1

2 Melamine - building problem 15⇥ 10 0.045 0.1 100 100 1500 2

3 High resistivity foam - low frequency 10⇥ 10 0.1 0.1 50 50 500 3

4 Melamine - automotive problem 10⇥ 10 0.02 0.1 100 100 1500 2

5 Melamine - high frequency problem 10⇥ 10 0.02 0.1 2000 1000 5000 2

6 Melamine -broadband fine-mesh 50⇥ 20 0.135 0.054 100 100 1500 2

7 Melamine -single target frequency 10⇥ 5 0.135 0.054 500 500 500 2

TABLE II. Acoustic and elastic properties of materials used

in the benchmark problems in Table I. Here, � is the open

porosity, ⇤0 is the thermal characteristic length, ⇤ is the vis-

cous characteristic length, � is the static airflow resistivity,

↵1 is the tortuosity, k0
0 is the thermal permeability, ⇢ is the

bulk density, E is the solid elastic modulus, ⌫ is the Poisson’s

ratio and ⌘ is the dissipation factor.

Material Material-1 Material-2 Material-3

parameters

Material: LKKK24 Melamine High-resistivity

soft foam

Acoustic model: JCAL JCAL JCAL46–48

� 0.9 0.99 0.8

⇤0 (µm) 449 196 100

⇤ (µm) 225 98 10

� (N·s·m�4) 25000 10000 300000

↵1 7.8 1.01 3

k00 4.75e-09 4.75e-09 4.75e-09

⇢ (kg·m�3) 31.08 8 80

E (Pa) 800000 160000 30000

(⌫) 0.4 0.44 0.44

(⌘) 0.265 0.1 0.01

elled at the left end. A region from the rigid wall up to
a length D is designated as the design domain. The de-
sign domain is followed by a fixed domain, which is just
an air region in this case with a length L. The design
domain is discretised into nelx and nely finite elements
along the horizontal and vertical directions respectively.
Within the unit cell, symmetry is assumed about the
central horizontal line, and sliding boundaries (ux-free,
uy = 0, P -free) are assumed at the top and bottom edges.
To save computational e↵ort, only half of the system is
modelled, and symmetry is imposed about the centerline
(ux-free, uy = 0, P -free). It has been verified that this
gives the same absorptions as obtained when modelling
the full unit cell with sliding supports in the top and bot-
tom edges. In all the problem instances, the mean sound

absorption coe�cient under normal incidence across the
target frequencies is to be maximised.

Although meant to be arbitrary, the problem in-
stances are chosen from practical engineering examples.
The material used for optimisation for each problem in-
stance is picked from three choices in Table II. In prob-
lem instance 1, a special material previously used by Lee,
Kim, Kim, and Kang24 (LKKK material) is used on a
coarser 10⇥ 10 discretisation. Note that the LKKK ma-
terial may not representative of a physical material due
to the high tortuosity value of 7.8. Problem instance 2
features a 45 mm long design domain representative of
a typical building application. Problem instance 3 uses
an artificial material with a high static airflow resistiv-
ity. In problem instance 4, a thin design domain of 2
cm, representative of a foam layer in an automotive ab-
sorber, is considered. In problem instance 5, a thin layer
is optimised for high-frequency absorption. Among the
problem instances, problem instance 6 has a relatively
fine mesh size with 50 ⇥ 20 elements featuring a thicker
design domain optimised on a broad frequency range.
Other than 1 and 3, all problem instances use Melamine
foam for control. In problem instance 7, a single target
frequency is considered.

III. OPTIMISATION APPROACHES

Several gradient-free heuristic and metaheuristic ap-
proaches, including well known and novel, are evaluated
in this study alongside the state-of-the-art gradient-based
approach SIMP. Henceforth in this paper, all the heuris-
tic and metaheuristic approaches will be referred to as
algorithms, and they are not to be confused with exact al-
gorithms as used by some authors. The algorithms tested
and their settings are summarised in Table III.

Five heuristic algorithms namely HC, CH1, CH2,
SIMPf0 and SIMPf2 are tested. HC is a first-
improvement hill climbing, where each element is flipped
between air and porous material, and the new solution
is accepted if it is improving. Consecutive elements are
flipped like in a raster scan (row-by-row) until the func-
tion evaluation budget is used up. CH1 is a constructive
heuristic that starts from an air-filled solution and pro-
gressively adds porous material in elements of best im-
provement in absorption. Similarly, CH2 starts from a

J. Acoust. Soc. Am. 150 (4), October 2021 Ramamoorthy et al. 5



TABLE III. Optimisation approaches tested (pseudocodes are included in the supplementary material).60

Abbr. Optimisation approach Procedure and parameter settings Algorithm type:
Determinis-
tic or Non-
deterministic

Trials Search
space

Gradient
usage

Fn.
eval.
budget

HEURISTICS

HC Hill climbing
(first improvement)

Start with a random binary array solution; Bit flip
the consecutive elements; Accept if improving and
move to the next element; Repeat from the start un-
less fn. eval. budget is used up. Element ordering is
like in a raster scan.

Non-deterministic
since starting
solution is random

31 Discrete No 4096

CH1 Constructive heuristic:
material addition

Start with air-filled design domain; Compute absorp-
tion improvement at each element by filling porous
material only in that element; Sort elements; Add
porous material at best ‘m’ improving elements; Re-
peat until design domain is fully porous; Track and
return the best solution. m is chosen such that the
budget is not exceeded.

Deterministic 1 Discrete No 4096

CH2 Constructive heuristic:
material removal

Similar to CH1. Start from fully porous design do-
main; Remove porous (replace with air) at ‘m’ least
worsening elements; Repeat until all porous is re-
moved; Track and return the best solution

Deterministic 1 Discrete No 4096

SIMPf0 SIMP with no filter53 Start from a random continuous solution, follow the
SIMP procedure53; Omit the filtering step. Use
SIMP penalty p = 3; move update - optimality cri-
teria; move limit m = 0.2; Volume fraction limit
Vf = 1.

Non-deterministic 31 Continuous Yes 1366

SIMPf2 SIMP with density filter53 Start from a random continuous solution, follow the
SIMP procedure53; use density filter ft=2. Use
SIMP penalty p = 3; move update - optimality cri-
teria; move limit m = 0.2; Volume fraction limit
Vf = 1; Filter radius rmin =2.

Non-deterministic 31 Continuous Yes 1366

METAHEURISTICS

GA Genetic algorithm54 Initialise population with 64 random binary solu-
tions; Selection: tournament–2; Crossover: uniform;
Mutation: bitflip; Mutation rate: 1/(N); Replace-
ment: best of parents and o↵spring replace parents;
Repeat from selection, unless budget is used up.

Non-deterministic
(uses a random
number generator)

31 Discrete No 4096

TABU Tabu search55 Initiate tabu list; Start with a random binary array
solution; Pick a random bit, not in tabu list; Accept
if improving and add the bit to tabu list; tabu tenure:
20% ofN ; Pick another random bit and repeat unless
budget is used up.

Non-deterministic
(since starting solu-
tion and moves are
random)

31 Discrete No 4096

CMA Covariance-matrix-
adaptation evolution
strategy56

Relax problem to continuous using SIMP interpola-
tion scheme with p = 3; Follow CMA procedure56;
Terminate if budget is used up; Discretise final con-
tinuous solution by rounding.

Non-deterministic
(uses a random
number gener-
ator to sample
points from the
distribution)

31 Continuous No 4096

CMAd Discrete variant of CMA Follow CMA procedure in continuous space; Before
fitness evaluation, discretise the sampled continuous
solutions by rounding; Return the rounded best so-
lution. An interpolation scheme is not necessary as
continuous solutions are never evaluated.

Non-deterministic 31 Discrete No 4096

DE Di↵erential evolution57,58 Relax problem to continuous using SIMP interpola-
tion scheme with p = 3; Follow di↵erential evolution
procedure57,58; Stop if budget is used up. Use popu-
lation size=32; F=0.2; CR=0.2;

Non-deterministic 31 Continuous No 4096

DEd Discrete variant of DE Follow the di↵erential evolution procedure; Before
fitness evaluation, discretise the sampled continuous
solutions by rounding; Return the rounded best so-
lution.

Non-deterministic 31 Discrete No 4096

porous material-filled solution and progressively removes
porous material from the elements where the decrease in
absorption is the least. SIMPf0 and SIMPf2 are solid-
isotropic-material-with-penalisation approaches53 which

use gradients of absorption to modify the solution at each
step. While SIMPf2 uses density filtering, SIMPf0 uses
no filtering techniques.
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Four popular metaheuristic approaches are tested,
including genetic algorithm (GA), tabu search (TABU),
covariance-matrix-adaptation evolution strategy (CMA)
and di↵erential evolution (DE). Additionally, discrete
variants of CMA and DE referred to as CMAd and DEd
are also tested, where the continuous shapes are rounded
before every absorption evaluation.

Except for CH1 and CH2, all the other algorithms
are non-deterministic as they embed a random compo-
nent, and each new trial of the non-deterministic algo-
rithm could produce a di↵erent near-optimal solution.
For these algorithms, 31 trials were run on each problem
instance in order to assess their average performance and
carry out statistical analyses.

All non-gradient algorithms are allowed 4096 func-
tion evaluations during the trials. Since absorption+ gra-
dient evaluations take approximately thrice the compu-
tational time (Eq. 11), SIMPf0 and SIMPf2 are allowed
1366 function evaluations.

The discrete algorithms, which only allow air or
porous elements in the design domain, are initiated from
random discrete solutions with equal probability of air
or porous material for each element (except for CH1 and
CH2). The continuous algorithms, which allow interme-
diate materials between air and porous materials in each
element, are initiated from solutions generated by assign-
ing a random number uniformly distributed between 0
and 1 to the topological design variables. Such random
initialisation is done to ensure a fair comparison making
no a priori assumptions about the solution.

Some of the newly proposed approaches, namely, hill
climbing, constructive heuristics, and the discrete vari-
ants of CMA evolution strategy and di↵erential evolu-
tion, in the specific way used here are tested for the
first time in topology optimisation. The others are well-
established algorithms, and resources including surveys,
tutorials and code implementations can be easily reached.
More specific implementation details are included in the
supplementary material. It is noted that a thorough
knowledge of all the algorithms is not essential to under-
stand the findings. These algorithms can be thought of
as black-boxes that optimise the shape design by search-
ing for the optimal assignment of the decision variables
� to maximise ↵(�).

IV. RESULTS AND DISCUSSION

A. Run time performance comparison

One of the desired aspects of a good topology op-
timisation strategy is the ability to find better quality
solutions in a limited CPU time. As more CPU time is
allowed, the algorithms progressively find solutions with
higher absorption. Fig. 2(a) compares the progress of the
best-so-far absorption values (↵) obtained versus CPU
time used by various algorithms on problem instance 6.

Multiple machines were used to run the optimisation
tests, and in order to remove the machine-dependence
on runtime in Fig. 2(a), the best-so-far absorption val-

ues were tracked against the number of function evalua-
tions, and runtimes were then computed by using aver-
age time-per-function-evaluation clocked on a reference
machine. The reference machine used features an In-
tel(R) Core(TM) i7-3820 CPU 3.6 GHz processor, 32
GB RAM and a 64-bit Windows 10 operating system
running Matlab2019b59. Scales indicating the number of
function evaluations are also provided for benchmarking
purposes. For all non-deterministic algorithms, as mul-
tiple trials were conducted, the absorption values shown
in Fig. 2(a) are averaged across the 31 trials after each
generation of the algorithm.

First, note that initial absorption levels are di↵er-
ent for the algorithms. While the discrete algorithms
HC, GA, TABU, CMAd and DEd are initiated from ran-
dom discrete solutions with ↵ around 0.71, the continu-
ous algorithms CMA, DE, SIMPf0 and SIMPf2 are ini-
tiated from random continuous solutions with ↵ around
0.65. CH2 starts from fully porous design domain with
↵ around 0.84 and CH1 starts from an empty (air-filled)
design domain with no absorption.

One of the first things to note is that the CH2 algo-
rithm does not produce an improvement from the fully
porous-filled solution and hence the best-so-far absorp-
tion value stays the same for this problem. For low CPU-
time budgets, SIMPf0 and SIMPf2 produce higher qual-
ity solutions than all the other algorithms except CH2.
SIMPf0 and SIMPf2 converge to a higher absorption than
the porous-filled CH2 solution in under 5 min on this
problem instance highlighting that gradient-based meth-
ods can be time-e�cient. After about 20 min of runtime,
HC produces better solutions on average than SIMP, but
the di↵erence is small.

After the designated budget of 4096 function evalua-
tions (1366 gradient-included function evaluations), HC,
SIMPf2, TABU, SIMPf0 and CH1 produce the top tier
solutions. CMAd follows closely by producing slightly
better-quality solutions compared to fully filled CH2 so-
lution towards the end. Whereas for DEd and GA, the
runtime performance was considerably poor.

It is important to appreciate that the solutions from
continuous algorithms (CMA, DE, SIMPf0 and SIMPf2)
consider intermediate materials between the porous ma-
terial and air �i 2 (0, 1] whereas the discrete algorithms
consider only porous material or air solutions �i 2 {0, 1}.
Since the solutions are from di↵erent search spaces, the
absorption levels cannot be directly compared between
the two. Although, the final shapes from continuous algo-
rithms are desired to be 0 or 1, they are often not. Hence,
they are forced to be discrete using a simple round-o↵
filter, and the absorption values are recomputed. Such
rounding leads to a drop or surge in the absorption val-
ues at the end of all continuous algorithms as can be ob-
served noticeably in CMA and DE plotlines in Fig. 2(a).
The rounded absorptions indicated by the end markers
are also trial-averaged. Rounding leads to no significant
changes in SIMPf0 and SIMPf2 solutions for this prob-
lem instance. For CMA and DE, the rounded solution
absorption values were poorer than SIMP solutions.
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(a)
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(e)

FIG. 2. (color online) Optimisation trials on problem instance 6: (a) Progress of best absorption found vs runtime (trial-

averaged). For continuous algorithms, the solutions are discretised in the end. (b) Distribution of final solution absorption

across trials. (c) Distribution of solution quality vs volume fraction (d) Sound absorption vs frequency for final shapes from

select algorithms. (e) Best shapes from di↵erent trials from top four algorithms and their absorption.

The above behaviour of continuous algorithms does
not seem to be the general trend across all problem in-
stances. When considering the runtime performance of
problem instance 1 shown in Fig. 3, SIMP algorithms
produce final solutions with intermediate materials which
when rounded result in a significant reduction in absorp-

tion. This behaviour is also prominent in other problem
instances especially the one with the high resistivity ma-
terial (plots for other problem instances included in the
supplementary material).
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FIG. 3. (color online) Progress of best absorption found vs

runtime: problem instance 1.

B. Final solution quality comparison

After rounding the continuous algorithm solutions
and re-evaluating absorption, the distribution of final ab-
sorption values are shown in Fig. 2(b). What is interest-
ing to note is that for non-deterministic algorithms, the
31 trials do not necessarily result in the same optimised
shapes and the final absorption values are spread out.
The boxes enclose first to third quartiles (i.e., 25 per-
centile to 75 percentile), the whiskers denote the span,
and the crosses denote the outliers.

Often in practice, a particular topology optimisation
strategy may be chosen, and one trial may be run to
determine a near-optimal shape. In such cases, it is de-
sirable to pick an algorithm that has the best median
performance across trials. Hence, using the median ab-
sorption across trials, the algorithms are sorted best to
worst from left to right in Fig. 2(b). HC and SIMPf2
turn out to be the top-performing algorithms for this
problem instance followed by TABU, SIMPf0 and CH1
in the second tier. DE, CMA and CMAd follow with
all trials producing better solutions than the fully-filled
CH2 solution. DEd and GA performed the poorest with
no trials producing better than the fully-filled solution.

The shapes produced from 10 of the trials from the
top four algorithms are displayed in Fig. 2(e). Most
shapes seem to have a thin layer of air near the rigid
backing as this allows removing elastic resonance around
500 Hz as can be observed from the absorption curves in
Fig. 2(d). Without filtering, SIMPf0 produces intricate
designs near this thin air layer compared to SIMPf2.

C. Performance across problem instances

For an overall comparison, the ranking is extended to
other problem instances in Table IV. Such a comparison
across many problem instances is essential as algorithms
performing well on one problem instance need not nec-
essarily perform well on other problem instances. The
ranking scheme is such that if the median absorption
values of two or more algorithms are the same correct
to two decimal places, they are assigned the same rank.

TABLE IV. The algorithms are ranked based on median val-

ues of optimised shape absorption (↵⇤) across trails. Lesser

the average rank, the better is the performance of the algo-

rithm. Algorithms are sorted based on the average of the

ranks across problem instances. This ranking scheme is pro-

vided for a quick look up only and is not meant to be a pre-

cise indicator of the performance. The ranking could change

if more problem instances and algorithms are considered.

Ranks Problem instances ! Avg. rank

Algorithms # 1 2 3 4 5 6 7

HC 1 1 3 1 1 1 1 1.29*

CMAd 1 3 1 1 4 8 1 2.71

CH1 7 1 8 1 1 3 1 3.14

TABU 1 5 4 8 7 3 1 4.14

CH2 5 6 4 1 4 9 1 4.29

SIMPf0 8 3 10 1 4 3 9 5.43

SIMPf2 10 6 11 1 1 1 11 5.86

DEd 1 9 2 10 9 10 1 6

CMA 6 6 4 8 9 7 8 6.86

DE 11 11 9 1 7 6 9 7.71

GA 9 10 4 11 11 11 1 8.14

This ranking is only provided for a quick summary of the
optimisation tests, and it is emphasised that the ranks
may not be the same for a di↵erent set of problem in-
stances.

From Table IV, one can observe that HC, CMAd
and CH1 rank among the top three. Although SIMPf2
and SIMPf0 performed well on problem instance 6, they
take respectively the 6th and 7th places overall among
the algorithms compared.

Surprisingly, the simple first-improvement hillclimb-
ing (HC) ranks among the best in all problem instances
except the high-resistivity material instance (problem in-
stance 3). This means that HC’s potential can to be
exploited by using it in hybrid algorithms. It is worth
noting that HC applied to the MBB beam compliance
minimisation6 results in the trivial fully-solid-filled so-
lution. A simple way to avoid this is to use a volume
fraction penalty with the objective function.

CMAd and CH1 ranked first in four problem in-
stances. Although CMAd ranked 8th in problem instance
6, its overall performance across the problem instances
puts the algorithm in second place. Notably, in problem
instance 3, which considers a high static airflow resistivity
material, CMAd performed the best. This problem in-
stance likely has many local optima and the performance
of CMAd indicates its global topology optimisation po-
tential. The poor performance of the SIMP algorithms in
this problem instance is likely due to the multi-modality
of the objective function and premature convergence to
local optima.

J. Acoust. Soc. Am. 150 (4), October 2021 Ramamoorthy et al. 9



Although the progress of absorption in the initial
stages of CH1 is slow compared to the other algorithms,
the final absorption value makes CH1 one of the best
algorithms. Notably, for many problem instances con-
sidered, the best absorption value from CH1 is higher
than the absorption of the discretised solutions from both
SIMPf0 and SIMPf2. CH1 seems to be better overall
compared to CH2, indicating that constructing the solu-
tion from scratch may be better than removing material
from a fully-filled solution.

Performance of CMA and DE were relatively poor
in this benchmark. One reason could be that the num-
ber of design variables is large and these strategies do
not exploit the correlation of the neighbouring-element
design variables, a special attribute in topology optimi-
sation problems.

Both CMAd and DEd seem to perform better than
CMA and DE in general, indicating that rounding during
the algorithm may be a better approach than rounding
the solutions after the termination of continuous algo-
rithms. While CMAd ranked among the top, the perfor-
mance of DEd was similar to that of SIMP in terms of
solutions quality.

Among the algorithms considered, GA performed the
poorest. Though, scope for improvement exists in terms
of using better mutation and crossover operators adapted
to topology optimisation, focus may be diverted to other
strategies which show better promise.

D. Best shapes obtained from algorithms

The best solutions from all the algorithms for all
problem instances are plotted in Fig. 4. For non-
deterministic algorithms, the solution with the highest
absorption among the 31 trials is shown. It is recalled
that manufacturability restrictions and morphological fil-
ters are not imposed in this study except for SIMPf2.
Results show both SIMPf0 and SIMPf2 produce similar
shapes for most problem instances.

For problem instance 1, all algorithms except SIMPf2
result in irregular shapes. The best quality shapes from
most algorithms are flat layers of air and porous material
towards the rigid wall with a somewhat circular air cavity
in the front. GA and DE produced checkerbox shapes.
Moreover, shapes from GA for all problem instances are
degenerate.

For problem instance 2, HC, CH1 and SIMPf0 pro-
duce the best shape with an almost porous material filled
design domain except for a layer of air next to the rigid
wall. CH1, SIMPf2, CMA, CMAd, TABU produced sim-
ilar shapes. CH2 resulted in a fully-filled shape with
slightly less absorption.

In problem instance 3 with a high static airflow re-
sistivity material, the shapes from all algorithms were
seemingly random patterns but with sort of a cavity in
the centre. SIMPf2 produces a result with a chunk of
porous material suspended in the air.

For problem instance 4, the optimal solution seems
to be a fully-filled design domain and most algorithms

are able to find this except for GA. The reason could be
that GA is initiated from random bit arrays which would
have volume fraction distributed near 50 % (central limit
theorem). Thus, initialising GA with solutions with a
range of volume fractions might be a sounder approach.

For problem instance 5, many algorithms find a solu-
tion with a shape almost filled with the porous material
except for air pockets near the rigid wall. CMA, DE and
DEd seem to be approaching this solution. CH2 com-
pletely fills the design domain with the porous material.

For problem instance 6, the fully-filled solution has
an elastic resonance in the frequency range considered,
as may be seen from Fig. 2(d). The elastic resonance
forms a drop in the absorption near 500 Hz. The best so-
lutions from di↵erent algorithms e↵ectively remove this
resonance. To do this, the algorithms seem to introduce
air layers at the front and near the rigid backing. CMA,
CMAd, DE and DEd give checker-board shapes which
somewhat removes a layer near the rigid backing. No-
tably, CH1 gives a smooth shape even though no man-
ufacturability restrictions were imposed. CH2 returns a
filled design domain and is unable to get rid of the reso-
nance.

For problem instance 7, many solutions have close
to complete sound absorption (↵ = 1). Almost all al-
gorithms find solutions with total sound absorption at
500 Hz. Notably, SIMPf0 and SIMPf2 seem to suggest a
fully-filled solution.

In general, the algorithms which feature random
move operations tend to produce degenerate shapes. Al-
though hill climbing results in shapes with high sound
absorption, the shapes obtained are sometimes irregu-
lar and need additional filtering. On the other hand,
constructive heuristic with material addition (CH1) has
both high performance and finds shapes with smoother
boundaries.

In summary, di↵erent algorithms seem to provide so-
lutions from a unique pool (Fig. 2(c)). The reason for
this is each approach uses unique move operations dur-
ing the optimisation to reach solutions that may not be
explored by other algorithms. Thus it may be worth
many optimisation strategies to find a set of unique solu-
tions which may be of interest to the acoustic engineer.
In addition, scope for improving many of these methods
exist. As an example, the performance of SIMP could
be improved by using better strategies for avoiding lo-
cal optima, and an appropriate morphological filter may
be used in CMAd to overcome the drawback of produc-
ing unconnected shapes while speeding up the algorithm.
The results outlined in this article provides an initial un-
derstanding of various heuristics and metaheuristics per-
form on topology optimisation for absorption maximisa-
tion. Thus, guidelines for developing hybrid algorithms
and hyper-heuristics may be arrived at for devising more
time-e�cient strategies that also produce solutions closer
to the true optima.
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Best shapes Problem instances !

Algorithms # 1
↵ ( Vf )

2 3 4 5 6 7

HC

0.91 (0.75) 0.58 (0.93) 0.84 (0.62) 0.21 (1.00) 0.68 (0.94) 0.91 (0.91) 1.00 (0.62)

CMAd

0.91 (0.73) 0.57 (0.90) 0.86 (0.62) 0.21 (1.00) 0.68 (0.95) 0.86 (0.71) 1.00 (0.68)

CH1

0.88 (0.72) 0.58 (0.92) 0.77 (0.58) 0.21 (1.00) 0.68 (0.90) 0.89 (0.70) 1.00 (0.64)

TABU

0.91 (0.78) 0.56 (0.89) 0.83 (0.56) 0.21 (0.99) 0.68 (0.95) 0.90 (0.86) 1.00 (0.80)

CH2

0.90 (0.80) 0.54 (1.00) 0.79 (0.74) 0.21 (1.00) 0.67 (1.00) 0.84 (1.00) 1.00 (0.76)

SIMPf0

0.90 (0.81) 0.58 (0.93) 0.75 (0.46) 0.21 (1.00) 0.68 (0.94) 0.90 (0.96) 1.00 (0.98)

SIMPf2

0.89 (0.85) 0.56 (0.93) 0.75 (0.38) 0.21 (1.00) 0.68 (0.95) 0.90 (0.94) 0.93 (1.00)

DEd

0.91 (0.74) 0.52 (0.75) 0.84 (0.55) 0.20 (0.93) 0.65 (0.83) 0.81 (0.60) 1.00 (0.62)

CMA

0.91 (0.75) 0.56 (0.88) 0.82 (0.57) 0.21 (0.95) 0.65 (0.86) 0.87 (0.74) 0.99 (0.82)

DE

0.82 (0.65) 0.38 (0.60) 0.81 (0.57) 0.21 (1.00) 0.67 (0.82) 0.88 (0.77) 0.99 (0.76)

GA

0.89 (0.66) 0.43 (0.61) 0.81 (0.56) 0.15 (0.73) 0.55 (0.70) 0.78 (0.56) 1.00 (0.56)

FIG. 4. Optimised shapes obtained from all algorithms for each problem instance. The shapes are discretised by rounding for

continuous algorithms. The values of mean absorption across frequencies (↵) are printed at the top of each shape in bold font

along with porous material volume fraction (Vf ) in parentheses. White and black represent air and the porous, respectively,

with the acoustic input on the left and rigid backing on the right.

V. CONCLUSIONS

In this work, topology optimisation to max-
imise sound absorption under normal incidence in an
impedance tube with a rigid backing is considered.
Optimisation tests were conducted using 5 heuristic
and 6 metaheuristic algorithms on 7 benchmark prob-
lem instances. The approaches include hill climb-
ing (HC), constructive heuristics (CH1 and CH2),
solid-isotropic-material-with-penalisation (SIMPf0 and
SIMPf2), genetic algorithm (GA), tabu search (TABU),
covariance-matrix-adaptation evolution strategy (CMA
and CMAd), and di↵erential evolution (DE and DEd).
Unlike in usual structural topology optimisation prob-
lems, volume fraction constraint and manufacturability
filters were not imposed. The highlights of the findings
are as follows.

• Gradient algorithms (SIMPf0 and SIMPf2) can
quickly converge to good quality solutions, but in

some problems, they either prematurely converge
to local optima or produce shapes that have in-
termediate materials indicating that the objective
function is multimodal with many local optima.

• When comparing the solution quality, no algo-
rithm clearly outperformed all others on all of
the problem instances. Ranking the algorithms
based on median solution quality revealed that
the hill climbing approach performed the best, fol-
lowed by the material-addition constructive heuris-
tic (CH1), and the discrete variant of covariance-
matrix-adaptation evolution strategy (CMAd).

• The optimal shapes produced by algorithms that
use stochastic components (GA, CMA, CMAd, DE,
DEd) tend to be irregular and unconnected, and
hence they might need additional filtering tech-
niques. Although HC produced higher sound ab-
sorption solutions in general, the optimal shapes
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produced were not smooth and crisp. On the other
hand, CH1 produces high-quality solutions that
also have fewer irregularities than HC. In addition
to this, the sound absorption values of shapes pro-
duced by CH1 were as good as or slightly better
than those produced by SIMPf0. Moreover, CH1
can be easily modified to include volume fraction
constraint by terminating the construction after the
desired volume fraction is reached. The material
removal heuristic (CH2) often returns a fully filled
design domain as the solution, and the reason for
this is not clear.

• Between the continuous algorithms (CMA and DE)
and their discrete variants (CMAd and DEd), the
discrete variants seem to perform better. This
means using filtering techniques before each objec-
tive function evaluation works better than filtering
the solutions at the end of the algorithm.

To conclude, the absorption maximisation topology
optimisation problem seems to be rich with many local-
optimal solutions, and di↵erent strategies explore di↵er-
ent regions of the search space producing unique varieties
of solutions. Insights obtained may be valuable in de-
signing hybrid strategies and hyperheuristics for general-
purpose optimisation of sound-absorbing materials.
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